Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
19040370 Dương Thị Ngân
Xem chi tiết
tuechi ヾ(•ω•`)o🖤🖤🖤🖤
10 tháng 4 2022 lúc 8:30

cj có thi violympic hả

Xyz OLM
10 tháng 4 2022 lúc 9:17

Câu 1 Đề sai bạn 

VD a = 5 ; b = 4 

=> a2 - ab + b = 52 - 5.4 + 4 = 9 \(⋮\)

nhưng a ; b \(⋮̸\)3

Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Chuu
4 tháng 5 2022 lúc 5:22

\(A=1.\left(12+13+14+15+16\right)\)

\(A=1.70\)

\(A=70\)

Lam
4 tháng 5 2022 lúc 7:45

A=1.(12+13+14+15+16)

-> A=1.70

-> A=70

Tryechun🥶
4 tháng 5 2022 lúc 10:21

\(A=\left(1+12\right).\left(1+13\right).\left(1+14\right).\left(1+15\right).\left(1+16\right)\\ =1.\left(12+13+14+15+16\right)\\ =1.70\\ =70\)

Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Trần Tuấn Hoàng
13 tháng 2 2022 lúc 19:33

-Để mình suy nghĩ ngồi làm cho bạn nhé.

Trần Tuấn Hoàng
13 tháng 2 2022 lúc 19:47

-Vì bài dài quá nên mình nói tóm tắt:

a) -Bạn chứng minh △ABM = △BCN (g-c-g) do có \(AB=BC\) , \(\widehat{BCN}=\widehat{ABM}=90^0\),\(\widehat{NBC}=\widehat{MAB}\) (bạn tự chứng minh).

-Suy ra: \(BM=CN\) .

-Suy ra 2 điều:

+\(QM^2-BQ^2=MN^2-MC^2\)

+\(QM+BQ=MN+MC\) (1)

\(QM^2-BQ^2=MN^2-MC^2\)

\(\Rightarrow\left(QM-BQ\right)\left(QM+BQ\right)=\left(MN-MC\right)\left(MN+MC\right)\)

\(\Rightarrow QM-BQ=MN-MC\) (2)

-Từ (1),(2) suy ra \(QM=MN\) nên △BMQ=△CNM (ch-cgv).

\(\Rightarrow\) MQ vuông góc với MN (bạn tự c/m).

\(QM=MN\) nên \(BQ=MC\) nên \(AQ=BM\Rightarrow PQ^2-AP^2=QM^2-BQ^2;QM+BQ=PQ+AP\)

Nên \(PQ=QM;\Delta APQ=\Delta BQM\) nên PQ⊥QM ; AP=BQ nên PQ=AQ

-Từ PQ=AQ bạn tự c/m PN=PQ (theo sườn mình đã cho) rồi sau đó c/m tam giác APQ=tam giác DNP rồi từ đó suy ra PQ vuông góc PN

.......

 

Phạm Kim Oanh
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 9 2021 lúc 22:25

Từ GT \(\Leftrightarrow a>0;bc>0\)

\(BĐT\Leftrightarrow\dfrac{a^2}{3}+\left(b+c\right)^2-3bc-a\left(b+c\right)\ge0\\ \Leftrightarrow\dfrac{1}{3}+\left(\dfrac{b+c}{a}\right)^2-\dfrac{b+c}{a}-\dfrac{3}{a^2}\ge0\)

Vì \(a^3>36\) nên 

\(\dfrac{1}{3}+\left(\dfrac{b+c}{a}\right)^2-\dfrac{b+c}{a}-\dfrac{3}{a^2}\\ >\left(\dfrac{b+c}{a}\right)^2-\dfrac{b+c}{a}+\dfrac{1}{4}=\left(\dfrac{b+c}{a}-\dfrac{1}{2}\right)^2\ge0\)

Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Ngân Lê Hoàng
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 6 2021 lúc 15:59

\(y'=\left(m+3\right)x^2-4x+m\)

Hàm nghịch biến trên R khi và chỉ khi \(y'\le0\) ; \(\forall x\in R\)

- Với \(m=-3\) ko thỏa mãn

- Với \(m\ne-3\) bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}m+3< 0\\\Delta'=4-m\left(m+3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -3\\\left[{}\begin{matrix}m\ge1\\m\le-4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow m\le-4\)