cho góc nhọn \(\widehat{xOy}\) trên cạnh Ox lấy 2 điểm A;B (A nằm giữa O và B) . Trên cạnh Oy lấy 2 điểm C;D (C nằm giữa O và D)
Chứng minh AB+CD<AD+BC
Giups mình với tôi nay mình học rồi cảm ơn các bạn nhiều!!!
Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên Oy lấy điểm B sao cho OA=OB. Trên tia Ax lấy điểm D, trên tia By lấy điểm C sao cho AD=BC.
a, Chứng minh ΔAOC=ΔBOD và \(\widehat{OAC}\)=\(\widehat{OBD}\)
b, Gọi N lầ giao điểm của AC và BD. Chứng minh ΔADN=ΔBCN và ON là phân giác của \(\widehat{xOy}\)
c, Gọi H,K lần lượt là giao điểm của ON với DC và AB. Chứng minh OH⊥CD, AB//CD.
: Cho góc nhọn xOy. Trên cạnh Ox lấy điểm A, trên cạnh Oy lấy điểm B sao cho OA = OB. Đường vuông góc với Ox kẻ qua A cắt Oy tại điểm C. Đường vuông góc với Oy kẻ qua B cắt Ox tại D và cắt AC tại I. Đường vuông góc với Ox kẻ qua D cắt Oy tại E. Đường vuông góc với Oy kẻ qua C cắt Ox tại F và cắt DE tại J. Chứng minh rằng:
Chứng minh rằng:
a) Tam giác AOI = tam giác BOI
b) OJ là tia phân giác của góc xOy.
c) Ba điểm O, I, J thẳng hàng.
Mn giúp em với ạ
Cho góc nhọn xOy và tia phân giác Oz của góc đó .Trên tia Ox ,lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB.Gọi C là 1 điểm Trên tia Oz.Chứng minh:
a) AC=BC và \(\widehat{xAC}=\widehat{yB}C\)
b) AN=BC vuông góc với Oz
Bài giải
a) \(\Delta AOC=\Delta BOC\left(c-g-c\right)\)\(\Rightarrow AC=BC\)
và \(\widehat{OAC}=\widehat{OBC}\)mà\(\widehat{OAC}+\widehat{CAx}=180^o\),do đó \(\widehat{xAC}=\widehat{yBC}\)
b) Gọi giao điểm của AB với tia Oz là H,ta có :
\(\Delta OHA=\Delta OHB\left(c-g-c\right)\),do đó \(\widehat{AHO}=\widehat{OHB}\)mà
\(\Delta OHA=\Delta OHB=90^o\)
\(\Rightarrow\)\(AB\perp Oz\)
P/s Hình hơn xấu :)
cho góc nhọn xOy trên cạnh Ox lấy hai điểm A và B sao cho A nằm giữa O và B . Trên cạnh Oy lấy 2 điểm C và D , sao cho C nằm giữa O và D . CM : AB + CD< AD +BC
Chohttps://olm.vn/cau-hoi/cho-goc-nhon-xoy-tren-canh-ox-lay-hai-diem-a-va-b-sao-cho-a-nam-giua-o-va-b-tren-canh-oy-lay-2-diem-c-va-d-sao-cho-c-nam-giua-o-va-d-cm-ab-c.5323815386517?lop=7
Cho góc nhọn xOy, trên 2 cạnh Ox, Oy lần lượt lấy 2 điểm A và B sao cho OA = OB, tia phân giác của góc xOy cắt AB tại I.
a) Chứng minh OI ⊥ AB.
b) D là hình chiếu của A trên Oy, C là giao điểm của AD với OI. Chứng minh BC ⊥ Ox
b) Xét tam giác AOC và tam giác BOC có:OA=OB(gt)góc AOC = góc BOC(OC là tia phân giác góc AOB)OC chung=>tam giác AOC=tam giác BOC(c-g-c)=>góc OAC= góc OBC=90độ(2 góc tương ứng)=>BC vuông góc với Ox
b) Xét tam giác AOC và tam giác BOC có:OA=OB(gt)góc AOC = góc BOC(OC là tia phân giác góc AOB)OC chung=>tam giác AOC=tam giác BOC(c-g-c)=>góc OAC= góc OBC=90độ(2 góc tương ứng)=>BC vuông góc với Ox
CHO GÓC NHỌN xOy . TRÊN 2 CẠNH Ox VÀ Oy LẦN LƯỢT LẤY 2 ĐIỂM A VÀ B SAO CHO OA=OB . TIA PHÂN GIÁC CỦA GÓC xOy
CẮT AB TẠI I
A>CM OI VUÔNG GÓC VỚI AB
B>GỌI D LÀ HÌNH CHIẾU CỦA ĐIỂM A TRÊN Oy ; C LÀ GIAO ĐIỂM CỦA AD VỚI OI . CM BC VUÔNG GÓC VỚI Ox
C>GIẢ SỬ \(\widehat{xoy}=60^o\) , OA=OB=6cm . TÍNH ĐỘ DÀI CỦA ĐOẠN THẲNG OC
MIK CẦN GẤP
cho góc nhọn \(\widehat{xoy}\),trên cạnh Ox lấy điểm M và N,trên cạnh Oy lấy hai điểm P và Q sao cho OM=OP;ON=OQ.Gọi E là giao điểm của hai đoạn thẳng MQ và NP.Chứng minh:
a) \(\Delta\)MOQ=\(\Delta\)PON
b)ME=PE
c)OE là tia phân giác của \(\widehat{xOy}\)
d)MP//NQ
Bài 3:
(4,0 điểm) Cho \widehat{xOy}\xOy nhọn, Om là tia phân giác của \widehat{xOy}xOy. Trên tia Om lấy điểm I, qua I kẻ đường thẳng vuông góc với Om cắt tia Ox; Oy lần lượt tại A và B.
1) Chứng minh rằng \Delta OAI = \Delta OBIΔOAI=ΔOBI và \text{ΔOAB}ΔOAB cân.
2) Trên tia Ax lấy điểm M, trên tia By lấy điểm N, sao cho AM = BN.AM=BN.
Chứng minh rằng \Delta OMN\ cân\ΔOMN ca^n và AB\text{//}\text{MN.}AB//MN.
3) Trên tia đối của tia Oy lấy điểm K sao cho OK = OBOK=OB. Đường thẳng vuông góc với Om tại O cắt AK tại H. Chứng minh rằng OH là tia phân giác của \widehat{KOA}KOA.
4) Tia KA cắt MN tại D. Chứng minh rằng: DA + DK < 2ON.DA+DK<2ON.
1: Xét ΔOIA vuông tại I và ΔOIB vuông tại I có
OI chung
IA=IB
=>ΔOIA=ΔOIB
=>OA=OB
=>ΔOAB cân tại O
2: OA+AM=OM
OB+BN=ON
mà OA=OB và AM=BN
nên OM=ON
=>ΔOMN cân tại O
Xét ΔOMN có OA/OM=OB/ON
nên AB//MN
14)Cho góc nhọn xOy, trên 2 cạnh Ox, Oy lần lượt lấy 2 điểm A và B sao cho OA = OB, tia phân giác của góc xOy cắt AB tại I. a) Chứng minh OI ⊥ AB . b) Gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OI. Chứng minh BC ⊥ Ox .p
a.Xét $\triangle$OAI và $\triangle$OBI có:
$\widehat{AOI}$ = $\widehat{BOI}$(OI là phân giác của $\widehat{xOy}$)
OB = OA(gt)
OI chung
=> $\triangle$OAI = $\triangle$OBI(c-g-c)
=>$\widehat{OIA}$ = $\widehat{OIB}$(2 góc t/ứ)
mà $\widehat{OIA}$ + $\widehat{OIB}$ = $180^0$
=>$\widehat{OIA}$ = $\widehat{OIB}$ = $180^0$ : 2 = $90^0$
=> OI$\bot$AB(đpcm)
b.Xét $\triangle$OBA có
AD là đng cao t/ứ vs OB(gt)
OI là đng cao t/ứ vs AB(cmt)
AD cắt OI tại C(gt)
=>C là trực tâm của $\triangle$OBA(tính chất 3 đng cao của $\triangle$)
=>BC ⊥Ox(đpcm)