Tìm điều kiện xác định của phương trình sau: x/(x-1) = (x+4)/(x+1)
Cho phương trình, tìm điều kiện xác định của phương trình sau 2 x + 1 x 2 - 4 + 2 x + 1 = 3 2 - x
A. x ≠ ± 2
B. x ≠ - 1
C. x ≠ ± 2 , x ≠ - 1
D. x ≠ 2
Tìm điều kiện xác định của các phương trình sau ( x - 1 ) ( x + 2 ) + 1 = 1 ( x - 2 ) .
Ta thấy x + 2 ≠ 0 khi x ≠ - 2 và x - 2 ≠ 0 khi x ≠ 2.
Do đó ĐKXĐ của phương trình (x - 1)/(x + 2) + 1 = 1/(x - 2) là x ≠ ± 2.
Tìm điều kiện xác định của phương trình sau: \(\sqrt{5x-1}+\sqrt{x+2}=7-x\).
ĐKXĐ: `{(5x-1>=0),(x+2>=0),(7-x>=0):}`
`<=>{(x>=1/5),(x>=-2),(x<=7):}`
`<=>1/5 <=x<=7`
`ĐKXĐ: {(5x - 1 >= 0),(x+2 >=0),(7-x >=0):}`
`<=> {(x >= 1/5),(x>= -2),(x <=7):}`
`<=> 1/5 <= x <= 7`
Tìm điều kiện xác định của các phương trình sau ( x - 1 ) ( 1 - 2 x ) = 1
Ta thấy 1 - 2x ≠ 0 khi x ≠ 1/2.
Do đó ĐKXĐ của phương trình (x - 1)/(1 - 2x) = 1 là x ≠ 1/2.
Tìm điều kiện xác định của bất phương trình:
\(\dfrac{\sqrt{\text{x - 2}}}{\text{x}+1}-\sqrt{\text{4 - x}}\ge0\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-2>=0\\4-x>=0\\x+1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2< =x< =4\\x< >-1\end{matrix}\right.\Leftrightarrow x\in\left[2;4\right]\)
tìm điều kiện xác định của phương trình sau 1+1/(2+x)=12/(x3+8)
\(1+\frac{1}{x+2}=\frac{12}{x^3+8}\Leftrightarrow1+\frac{1}{x+2}=\frac{12}{\left(x+2\right)\left(x^2-2x+4\right)}\)
đk : \(x\ne2\)
\(x^2-2x+4=x^2-2x+1+3=\left(x-1\right)^2+3\ge3\ne0\)( luôn đúng )
Cho phương trình: \(\frac{x}{x-1}=\frac{x+4}{x+1}\)
a) Tìm điều kiện xác định của phương trình trên
b) Giải phương trình trên.
a) ĐKXĐ: : x ≠ 1 và x ≠ -1.
b) Quy đồng và khử mẫu ta được PT: x(x + 1) = (x – 1)(x +4)
⇔ x2 +x = x2 +4x– x -4
⇔ x – 4x +x = -4 -2x = -4 x = 2(thỏa mãn ĐKXĐ)
Vậy PT có tập nghiệm S = {2}
Câu 1 : Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn:
A. x2 - 2 = 0
B. \(\dfrac{1}{2}\)x - 3 = 0
C. \(\dfrac{1}{x}\) - 2x = 0
D. (22 - 4)x + 3 = 0 .
Câu 2 : Điều kiện xác định của phương trình \(\dfrac{x-2}{x+1}\) = \(\dfrac{2x+3}{x}\) là :
A. x ≠ 1
B. x ≠ -1
C. x ≠ 0, x ≠ 1
D. x ≠ 0, x ≠ -1
Câu 3 : Cặp phương trình nào tương đương là:
A. x + 4 = 0 và x = -4
B. (x – 5)(x + 5) = 0 và x2 = 5
C. x2 = 9 và x = 9
D. x2 + 3 = 0 và x = 3
Câu 4 : Cho ΔABC ∽ ΔDEF theo tỉ số đồng dạng là \(\dfrac{2}{3}\).
Khi đó ΔDEF ∽ ΔABC theo tỉ số đồng dạng là:
A.\(\dfrac{3}{2}\)
B.\(\dfrac{9}{4}\)
C.\(\dfrac{4}{9}\)
D.\(\dfrac{2}{3}\)
Câu 5 : Cho tam giác ABC có: DE / /BC, AD = 6cm, AB = 9cm, AC = 12cm. Độ dài AE = ?
A. AE = 6cm
B. AE = 8cm
C. AE = 10cm
D. AE = 12cm
Câu 6 (TL) : Cho biểu thức A = \(\dfrac{x+2}{3}\) và B = \(\dfrac{2x}{x-3}\) - \(\dfrac{2x^2+3x+9}{x^2-9}\) với x ≠ 3; x ≠ -3
a) Tính giá trị của A tại x = 14
b) Rút gọn biểu thức P = A.B
Câu 7 (TL) : Cho ΔABC vuông tại B (BA < BC), đường cao BH.
a) Chứng minh: ΔABC ∽ ΔBHC
b) Tia phân giác của góc BAC cắt BH tại D. Biết AH = 6cm, AB = 10cm. Tính BH, AD?
c) Tia phân giác của góc HBC cắt AC tại M. Chứng minh: \(\dfrac{HD}{DB}\)=\(\dfrac{HM}{MC}\)
Mọi người giúp em với ạ (làm đc câu nào thì làm ạ làm tự luận hình thì càng tốt ạ)
1B
2D
3A
4A
5B
6:
a: \(A=\dfrac{14+2}{3}=\dfrac{16}{3}\)
b: P=A*B
\(=\dfrac{x+2}{3}\cdot\dfrac{2x^2+6x-2x^2-3x-9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x+2}{3}\cdot\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{x+2}{x+3}\)
tìm điều kiện xác định của các phương trình sau
\(a,3x^2-2x=0\) \(b,\dfrac{1}{x-1}=3\)
\(c,\dfrac{2}{x-1}=\dfrac{x}{2x-4}\) \(d,\dfrac{2x}{x^2-9}=\dfrac{1}{x+3}\)
\(e,2x=\dfrac{1}{x^2-2x+1}\) \(f,\dfrac{1}{x-2}=\dfrac{2x}{x^2-5x+6}\)
giúp mik với , mik cần gấp
a)\(x\in R\)
b)\(x\ne1\)
c) \(x\notin\left\{1;2\right\}\)
d) \(x\notin\left\{3;-3\right\}\)
e) \(x\ne1\)
f) \(x\notin\left\{2;3\right\}\)
a) x∈R
b) x≠1
c) x∉{1;2}
d) x∉{3;−3}
e) x≠1
f) x∉{2;3}