\(\dfrac{n}{n-3}\)tìm giá trị nguyên của n để các phân số có giá trị nguyên
Tìm giá trị nguyên của n để các phân số có giá trị nguyên.
A=\(\dfrac{3n+10}{n+3}\)
Ta có A= (3n +10)/(n+3)
= [ 3(n+3) +1 ] /(n+3)
= 3 + 1/(n+3)
Để A nguyên thì 1/(n+3) cũng phải nguyên
tức 1 phải chia hết cho n+3
=> n + 3 = 1 hoặc n + 3 = -1;
Trường hợp: n+3 = 1 => n = -2 khi đó A = 3 + 1 = 4
Trường hợp: n+3 = -1 => n = -4 khi đó A = 3 -1 = 2
Bài 1:
Tìm số nguyên n để phân số A= \(\dfrac{1}{n+3}\)có giá trị nguyên
Bài 2 : Tìm số nguyên n để phân số B = \(\dfrac{n+4}{n+1}\)có giá trị nguyên
bài 1
để A∈Z
\(=>n+3\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(=>\left\{{}\begin{matrix}n+3=-1\\n+3=1\end{matrix}\right.=>\left\{{}\begin{matrix}n=-4\\n=-2\end{matrix}\right.\)
vậy \(n\in\left\{-4;-2\right\}\) thì \(A\in Z\)
Để A nguyên
⇒ \(\left(n+3\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
n+3 1 -2
n -2 -4
\(B=\dfrac{n+3+1}{n+1}=1+\dfrac{3}{n+1}\)
Để B nguyên
\(\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n+1 1 -1 3 -3
n 0 -2 2 -4
Tìm các giá trị nguyên của n để phân số G = \(\dfrac{3n+2}{n-1}\) có giá trị là số nguyên
ta có n-1 ⋮ n-1
⇒3(n-1)⋮ n-1
⇒3n-3⋮ n-1
⇒(3n+2)-(3n-3)⋮ n-1
⇒5⋮ n-1
⇒(n-1)ϵ Ư(5)
n-1 | 1 | 5 | -1 | -5 |
n | 2 | 6 | 0 | -4 |
vậy n={2;6;0;-4}
\(G=\dfrac{3n+2}{n-1}=\dfrac{3n-3+5}{n-1}=3+\dfrac{5}{n-1}\)
Để G là số nguyên thì n - 1 thuộc ước của 5
Lập bảng giá trị => n
Tìm các giá trị nguyên của n để phân số A=\(\dfrac{2n+2021}{n+4}\)
có giá trị là số nguyên
Cho phân số A=\(\dfrac{n+1}{n-3}\) (n\(\in\)Z)
a, Tìm các giá trị của n để A là phân số.
b, Tìm n để A có giá trị nguyên.
a, Để A là phân số khi n - 3 \(\ne\)0<=> n \(\ne\)3
b, Để A nguyên khi \(n+1⋮n-3\Leftrightarrow n-3+4⋮n-3\Leftrightarrow4⋮n-3\)
\(\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n - 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a) Để A là phân số thì \(n-3\ne0\)
hay \(n\ne3\)
b) Để A là số nguyên thì \(n+1⋮n-3\)
\(\Leftrightarrow4⋮n-3\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{4;2;5;1;7;-1\right\}\)
tính:C=\(\dfrac{5}{1.2}+\dfrac{5}{2.3}+\dfrac{5}{3.4}+...+\dfrac{5}{99.100}\)
tìm x: Ix+1I=5
Tìm các giá trị nguyên của n để phân số A= \(\dfrac{2n+5}{n+3}\)có giá trị là số nguyên
1)C=5/1.2+5/2.3+5/3.4+...+5/99.100
C=5.(1/1.2+1/2.3+1/3.4+...+1/99.100)
C=5.(1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100)
C=5.(1/1-1/100)
C=5.99/100
C=99/20
2)|x+1|=5
⇒x+1=5 hoặc x+1=-5
x=4 hoặc x=-6
3) Giải:
Để A=2n+5/n+3 là số nguyên thì 2n+5 ⋮ n+3
2n+5 ⋮ n+3
⇒2n+6-1 ⋮ n+3
⇒1 ⋮ n+3
Ta có bảng:
n+3=-1 ➜n=-4
n+3=1 ➜n=-2
Vậy n ∈ {-4;-2}
cho phân số \(\dfrac{5}{3n-1}\) (n ∈ Z) tìm các giá trị của n để phân số đó có giá trị là một số nguyên
\(\dfrac{5}{3n-1}\in Z\Rightarrow3n-1=Ư\left(5\right)\)
\(\Rightarrow\left[{}\begin{matrix}3n-1=-5\\3n-1=-1\\3n-1=1\\3n-1=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=-\dfrac{4}{3}\left(ktm\right)\\n=0\\n=\dfrac{2}{3}\left(ktm\right)\\n=2\end{matrix}\right.\)
Vậy \(n=\left\{0;2\right\}\)
Cho biểu thức A= \(\dfrac{2n+1}{n-2}\)
a) Tìm điều kiện của số nguyên n để A là một phân số. Tính giá trị của A khi n= -2.
b)Tìm các số nguyên n sao cho phân số A có giá trị là một số nguyên.
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
Cho A = \(\dfrac{n+10}{2n-8}\) - tìm các số nguyên n để biểu thức A có giá trị là phân số .
- tìm các số tự nhiên n để biểu thức A có giá trị là một số nguyên .