Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Ngân
Xem chi tiết
Lấp La Lấp Lánh
29 tháng 11 2021 lúc 16:15

1A,B,D

2 M=2

\(=\dfrac{3}{4x}\)

\(=\dfrac{4\left(x+y\right)}{x-y}=\dfrac{4x+4y}{x-y}\)

5 K rút gọn đc

\(=\dfrac{4\left(x-1\right)+2\left(x-1\right)}{6\left(x-1\right)}=\dfrac{6\left(x-1\right)}{6\left(x-1\right)}=1\)

Nguyễn Lê Phước Thịnh
21 tháng 10 2021 lúc 20:23

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x+y}{3\cdot5+2}=\dfrac{1}{17}\)

Do đó: \(\left\{{}\begin{matrix}x=\dfrac{5}{17}\\y=\dfrac{2}{17}\end{matrix}\right.\)

Nguyễn Hà Giang
21 tháng 10 2021 lúc 20:24

Ta có : 2x=5y2x=5y ⇒3x15=y2⇒3x15=y2

Áp dụng tính chất của dãy tỉ số bằng nhau có :

⇒3x15=117⇒x=517⇒3x15=117⇒x=517

nguyễnhươnggiang
Xem chi tiết
Nguyễn Nhật Phong
Xem chi tiết
Akai Haruma
22 tháng 11 2023 lúc 20:03

Lời giải:
Đặt $3x+5y=a; x+4y=b$.

Ta có: $2a+b=2(3x+5y)+x+4y=7x+14y=7(x+2y)\vdots 7$

$ab\vdots 7\Rightarrow a\vdots 7$ hoặc $b\vdots 7$

Nếu $a\vdots 7$. Khi đó: $2a+b\vdots 7\Rightarrow b\vdots 7$

$\Rightarrow ab\vdots (7.7)$ hay $ab\vdots 49$

Nếu $b\vdots 7$. Khi đó: $2a+b\vdots 7\Rightarrow 2a\vdots 7\Rightarrow a\vdots 7$

$\Rightarrow ab\vdots (7.7)$ hay $ab\vdots 49$
Vậy ta có đpcm.

 

Furied
Xem chi tiết
๖ۣۜHả๖ۣۜI
3 tháng 3 2022 lúc 19:49

D

Vũ Quang Huy
3 tháng 3 2022 lúc 19:49

d

D

phuonglinh
Xem chi tiết
missing you =
16 tháng 7 2021 lúc 13:29

a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)

áp dụng tính chất dãy tỉ số = nhau

\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)

\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)

\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)

\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)

b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)

có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)

\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)

áp dụng t/c dãy tỉ số = nhau

\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)

\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)

\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)

\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)

c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)

\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)

thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)

\(=>y=2\)

\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)

d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)

thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)

\(=>x=\dfrac{2.3}{3}=2\)

 

 

halo
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 2021 lúc 14:34

Từ hệ thứ 2: \(\left\{{}\begin{matrix}3x+5y=7\\2x-y=2m\end{matrix}\right.\)

So sánh với hệ thứ nhất, ta thấy 2 hệ tương đương khi và chỉ khi \(2m=6\)

\(\Leftrightarrow m=3\)

hi guy
Xem chi tiết
Nguyễn Huy Tú
12 tháng 2 2022 lúc 18:07

Thay x = 1/3 ; y = -1/5 vào Q ta được 

\(Q=\dfrac{3.1}{3}-5\left(-\dfrac{1}{5}\right)+1=3+1+1=5\)

1 người ;-;
12 tháng 2 2022 lúc 18:20

Thay x = 1/3 ; y = -1/5 vào Q ta được 

Nguyễn
Xem chi tiết