cho biểu thức A=3x X+27/x+4 tìm x để A=15
cho biểu thức A= \(\dfrac{x}{2x+4}\) + \(\dfrac{3x+2}{x^2-4}\)
a) Tìm điều kiện x để giá trị biểu thức A xác định
b) Rút gọn biểu thức A
c) Tìm x để A=0
a) A đc xác định <=>2x+4\(\left\{{}\begin{matrix}2x+4\ne0\\x^2-4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-2\\x\ne2\end{matrix}\right.\)
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
b) Ta có: \(A=\dfrac{x}{2x+4}+\dfrac{3x+2}{x^2-4}\)
\(=\dfrac{x}{2\left(x+2\right)}+\dfrac{3x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}+\dfrac{2\left(3x+2\right)}{2\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x+6x+4}{2\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x^2+4x+4}{2\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x+2}{2\left(x-2\right)}\)
c) Để A=0 thì \(\dfrac{x+2}{2\left(x-2\right)}=0\)
\(\Leftrightarrow x+2=0\)
hay x=-2(Không thỏa mãn ĐKXĐ)
Vậy: Không có giá trị nào của x để A=0
a)
ĐKXĐ: \(x\notin\left\{0;3;-3\right\}\)
Ta có: \(A=\left(\dfrac{1}{3}+\dfrac{3}{x^2-3x}\right):\left(\dfrac{x^2}{27-3x^2}+\dfrac{1}{x+3}\right)\)
\(=\left(\dfrac{1}{3}+\dfrac{3}{x\left(x-3\right)}\right):\left(\dfrac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right)\)
\(=\left(\dfrac{x\left(x-3\right)}{3x\left(x-3\right)}+\dfrac{9}{3x\left(x-3\right)}\right):\left(\dfrac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\dfrac{3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}\right)\)
\(=\dfrac{x^2-3x+9}{3x\left(x-3\right)}:\dfrac{-x^2+3x-9}{3\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2-3x+9}{3x\left(x-3\right)}\cdot\dfrac{3\left(x-3\right)\left(x+3\right)}{-\left(x^2-3x+9\right)}\)
\(=\dfrac{-x-3}{x}\)
b) Để A nguyên thì \(-x-3⋮x\)
mà \(-x⋮x\)
nên \(-3⋮x\)
\(\Leftrightarrow x\inƯ\left(-3\right)\)
\(\Leftrightarrow x\in\left\{1;-1;3;-3\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{1;-1\right\}\)
Vậy: Để A nguyên thì \(x\in\left\{1;-1\right\}\)
Bài 1: Giải phương trình sau ( biến đổi đặc biệt ):
\(\frac{x-1}{13}\) - \(\frac{2x-13}{15}\)= \(\frac{3x-15}{27}\) - \(\frac{4x-27}{29}\)
Bài 2: Cho biểu thức A= \(\frac{4}{3x-6}\) - \(\frac{x}{x^2-4}\)
a, Tìm điều kiện xác định của biểu thức
b, Tính A
c, Tính giá trị của biểu thức A tại x=1
HEPL ME!!! Mai tớ phải nộp bài rồi..
1/
\(\frac{x-1}{13}-\frac{2x-13}{15}=\frac{3x-15}{27}-\frac{4x-27}{29}\)
\(\Leftrightarrow\left(\frac{x-1}{13}-1\right)-\left(\frac{2x-13}{15}-1\right)=\left(\frac{3x-15}{27}-1\right)-\left(\frac{4x-27}{29}-1\right)\)
\(\Leftrightarrow\frac{x-14}{13}-\frac{2\left(x-14\right)}{15}=\frac{3\left(x-14\right)}{27}-\frac{4\left(x-14\right)}{29}\)
\(\Leftrightarrow\frac{x-14}{13}-\frac{2\left(x-14\right)}{15}-\frac{3\left(x-14\right)}{27}+\frac{4\left(x-14\right)}{29}=0\)
\(\Leftrightarrow\left(x-14\right)\left(\frac{1}{13}-\frac{2}{15}-\frac{3}{27}+\frac{4}{29}\right)=0\)
\(\Leftrightarrow x-14=0\)(vì 1/13 -2/15 -3/27 +4/29 khác 0)
\(\Leftrightarrow x=14\)
vậy...................
2/
\(a,ĐKXĐ:x\ne\pm2\)
\(b,A=\frac{4}{3x-6}-\frac{x}{x^2-4}\)
\(=\frac{4}{3\left(x-2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4\left(x+2\right)-3x}{3\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)
c,với \(x\ne\pm2\)ta có \(A=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)
với x=1 thay vào A ta có \(A=\frac{1+8}{3\left(1-2\right)\left(1+2\right)}=\frac{9}{-9}=-1\)
Cho biểu thức: A=\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
a) Rút gọn biểu thức A.
b) Tính giá trị của biểu thức A khi x = -2 và x = 4.
c) Tìm x biết A = 3.
d) Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên.
a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)
Có vài bước mình làm tắc á nha :>
Cho biểu thức:
A=\(\left(\frac{3}{x+5}-\frac{3x-15}{2x-15}.\left(\frac{2x-15}{x^2-25}-2x+15\right)\right):\left(1-x\right)\)
Tìm x để biểu thức A xác định
diều kiện xác định là các mẫu phải khác o; số chia cũng khác o nhé:
ĐK: +) \(x+5\ne0\Rightarrow x\ne-5\)
+) \(2x-15\ne0\Rightarrow x\ne\frac{15}{2}\)
+) \(x^2-25\ne0\Rightarrow\left(x+5\right)\left(x-5\right)\ne0\Rightarrow x\ne\pm5\)
+) \(1-x\ne0\Rightarrow x\ne1\)
Vậy điều kiện xác đinh của A là : \(x\ne1;x\ne\frac{15}{2};x\ne\pm5\)
cho biểu thức (2x+a)(x^2-3x+4) tìm a để biểu thức trên k chứa x
Cho biểu thức: \(A=\left(\frac{1}{3}+\frac{3}{x^2-3x}\right):\left(\frac{x^2}{27-3x}+\frac{1}{x+3}\right)\)
a,Tìm DKXĐ rồi rút gọn biểu thức A
b,Tìm x \(\notin\)Z để A nhận giá trị nguyên
Đề sai ạ ! Sửa lại nhé :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
\(A=\left(\frac{1}{3}+\frac{3}{x^2-3x}\right):\left(\frac{x^2}{27-3x^2}+\frac{1}{x+3}\right)\)
\(\Leftrightarrow A=\frac{x^2-3x+9}{3\left(x^2-3x\right)}:\left(\frac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right)\)
\(\Leftrightarrow A=\frac{x^2-3x+9}{3x\left(x-3\right)}:\frac{-x^2+3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{x^2-3x+9}{3x\left(x-3\right)}.\frac{3\left(x-3\right)\left(x+3\right)}{-x^2+3x-9}\)
\(\Leftrightarrow A=\frac{-\left(x+3\right)}{x}\)
b) Để \(A\inℤ\)
\(\Leftrightarrow-\left(x+3\right)⋮x\)
\(\Leftrightarrow-x-3⋮x\)
\(\Leftrightarrow3⋮x\)
\(\Leftrightarrow x\inƯ\left(3\right)\)
Vậy để \(A\inℤ\Leftrightarrow x\inƯ\left(3\right)\)(\(x\neℤ\))
Bạn sửa cho mik dòng cuối :
\(x\ne Z\)thành \(x\notin Z\)nhé !
Bài 5: Tìm a, b để: x^4-3x^3+3x^2+ax+b chia hết cho x^2-3x+2
Bài 6: Tìm x thuộc Z để giá trị của biểu thức: x^3+2x-x^2+7 chia hết cho giá trị của biểu thức x^2+1
3x+7=28
3x =28-7
3x =21
x =21:3
x =7
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên