Cho x,y,z>0 thỏa mãn x+y+z=4.CMR \(x+y\ge xyz\)
Cho x , y , z là các số thực khoảng ( 0 ; 1 ) thỏa mãn xyz = ( 1- x ) ( 1-y ) (1-z ) . CMR :
\(x^2+y^2+z^2\ge\frac{3}{4}\)
Từ giả thiết , ta có :
\(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\left(1\right)\)
\(\Rightarrow1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\)
Áp dụng bất đẳng thức sau : \(abc\le\left(\frac{a+b+c}{3}\right)^3\) ta có :
\(1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\le\left(\frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3}{3}\right)^3\)
\(\Rightarrow3\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3\)
\(\Rightarrow6\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Rightarrow6xyz\le xy+yz+zx\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra:
\(3-3\left(x+y+z\right)+3\left(xy+yz+zx\right)=6xyz\le xy+yz+zx\)
\(\Rightarrow0\ge3-3\left(x+y+z\right)+2\left(xy+yz+zx\right)\)
Cộng 2 vế của bất đẳng thức trên cho \(\left(x^2+y^2+z^2\right)\)ta được:
\(x^2+y^2+z^2\ge\left(x+y+z\right)^2-3\left(x+y+z+3\right)=\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu '' = '' xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\)
ta có:
xyz=(1-x).(1-y).(1-z) (1)
=>1=(1:x-1).(1:y-1).(1:z-1)
Cho x, y, z > 0 thỏa mãn : ( x + y + z ).xyz = 1
CMR : ( x + y ).( x + z ) \(\ge\)2
Đặt \(A=\left(x+y\right)\left(x+z\right)=x^2+xy+xz+yz.\)
\(=x\left(x+y+z\right)+yz\)
Áp dụng bđt AM-GM ta có
\(A\ge2\sqrt{xyz\left(x+y+z\right)}=2\sqrt{1}=2\)(đpcm)
Gọi số xe mà đoàn có là : x ( xe ) ( \(x\inℕ^∗\))
Thực tế có : x + 3 ( xe )
=> Lúc đầu mỗi xe chở được \(\frac{480}{x}\)( Tấn )
Thực tế mỗi xe chở được \(\frac{480}{x+3}\)( Tấn )
Theo đề bài ta có :
\(\frac{480}{x}-\frac{480}{x+3}=8\)\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{8}{480}\)\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{8}{480}\)
\(\Leftrightarrow\frac{3}{x^2+3x}=\frac{1}{60}\Leftrightarrow x^2+3x=180\) \(\Leftrightarrow x^2+3x-180=0\)
\(\Leftrightarrow\left(x-12\right)\left(x+15\right)=0\)
\(\orbr{\begin{cases}x=12\left(Tm\right)\\x=-15\left(kTm\right)\end{cases}}\)
Vậy lúc đầu đoàn có 12 xe
Cho x;y;z>0 thỏa mãn xyz=1.CMR \(A=\frac{1}{x+y+z}-\frac{2}{xy+yz+zx}\ge\frac{-1}{3}\)
Ta có
\(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)
\(=>x^2y^2+y^2z^2+z^2x^2+2\left(xyz\right)\left(x+y+z\right)\ge3xyz\left(x+y+z\right)\)
\(=>\left(xy+yz+zx\right)^2\ge3\left(x+y+z\right)\)
\(=>\frac{1}{\left(x+y+z\right)}\ge\frac{3}{\left(xy+yz+zx\right)^2}\)
\(=>A\ge\frac{3}{\left(xy+yz+zx\right)^2}-\frac{2}{xy+yz+zx}\)
đặt
\(\frac{1}{xy+yz+zx}=t\)
\(=>A\ge3t^2-2t\)
mà \(\left(3t-1\right)^2\ge0=>9t^2-6t+1\ge0=>3t^2-2t+\frac{1}{3}\ge0\Rightarrow3t^2-2t\ge-\frac{1}{3}\)
\(=>A\ge-\frac{1}{3}\)(dpcm)
Dấu = xảy ra khi x=y=z=1
tinh tuoi con gai bang 1/4 tuoi me , tuoi con bang 1/5 tuoi me . tuoi con gai cong voi tuoi cua con trai
la 18 tuoi . hoi me bao nhieu tuoi ?
Cho các sô thực dương x,y,z thỏa mãn xy+yz+zx=3 .CMR:\(\frac{1}{xyz}+\frac{4}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{3}{2}\)
Cho x,y,z là các số thực dương thỏa mãn \(x+y+z=6\). Chứng minh rằng \(\dfrac{x+y}{xyz}\ge\dfrac{4}{9}\)
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=z^2+\left(x+y\right)^2+2z\left(x+y\right)=36\)
áp dụng BĐT cosi :
\(z^2+\left(x+y\right)^2\ge2z\left(x+y\right)\)
<=> \(z^2+\left(x+y\right)^2+2z\left(x+y\right)\ge4z\left(x+y\right)=36< =>z\left(x+y\right)\ge9\)
ta lại có \(\dfrac{x+y}{xyz}=\dfrac{x}{xyz}+\dfrac{y}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xz}\) áp dụng BĐT buhihacopxki dạng phân thức => \(\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{4}{yz+xz}=\dfrac{4}{z\left(x+y\right)}\ge\dfrac{4}{9}\left(đpcm\right)\)
dấu bằng xảy ra khi \(\left[{}\begin{matrix}yz=xz< =>x=y\\x+y+z=6\\z^2=\left(x+y\right)^2\end{matrix}\right.< =>\left[{}\begin{matrix}x+y+z=6\\z=2x=2y\end{matrix}\right.< =>\left[{}\begin{matrix}x=y=\dfrac{3}{2}\\z=3\end{matrix}\right.\)
\(\dfrac{x+y}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xz}\).
Áp dụng bất đẳng thức Cauchy-Schawrz dạng Engel:
\(\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{4}{z\left(x+y\right)}\) (1).
Áp dụng bất đẳng thức Cauchy cho hai số dương z và x+y, ta có:
\(z\left(x+y\right)\le\left(\dfrac{x+y+z}{2}\right)^2=9\). Suy ra, \(\dfrac{4}{z\left(x+y\right)}\ge\dfrac{4}{9}\) (2).
Từ (1) và (2), suy ra \(\dfrac{x+y}{xyz}\ge\dfrac{4}{9}\) (đpcm).
Dấu "=" xảy ra khi và chỉ khi \(\dfrac{1}{yz}=\dfrac{1}{xz}\) và \(z=x+y\).
Cho x;y;z >0 thỏa mãn x+y+z=1. CMR:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le\frac{\left(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\right)\sqrt{xyz}+6\left(x^4+y^4+z^4\right)}{2xyz}\)
Cho các số thực x,y,z khác 0 và thỏa mãn
\(\hept{\begin{cases}x+y+z=xyz\\x^2=yz\end{cases}}\). CMR x2\(\ge\)3
Thay x^2 =yz vào x+y+z = xyz ta có: \(x+y+z=x^3\)
Chia cả 2 vế cho x khác 0 ta có: \(1+\frac{y}{x}+\frac{z}{x}=x^2\)
\(\Rightarrow x^2=1+\frac{y}{x}+\frac{z}{x}\ge1+2\sqrt{\frac{yz}{x^2}}=1+2=3\)
Dấu '=' xảy ra khi \(x=y=z=\pm\sqrt{3}\)
cho các số thực x,y,z thuộc [0,1] thỏa mãn x+y+z=3/2. CMR x^4+y^4+z^4+xyz/4=<17/16