Do x + y + z = 4 suy ra z = 4 - y -x
Ta có x + y >= 4xy -x^2y - yx^2
Do x + y + z = 4 suy ra z = 4 - y -x
Ta có x + y >= 4xy -x^2y - yx^2
Cho x , y , z là các số thực khoảng ( 0 ; 1 ) thỏa mãn xyz = ( 1- x ) ( 1-y ) (1-z ) . CMR :
\(x^2+y^2+z^2\ge\frac{3}{4}\)
Cho x, y, z > 0 thỏa mãn : ( x + y + z ).xyz = 1
CMR : ( x + y ).( x + z ) \(\ge\)2
Cho các số thực x, y , z thỏa mãn 2 điều kiện :
a) (x + y) ( y + z)( z + x) = xyz
b) (x3 + y3 ) (y3 + z3) ( x3 + z3) = x3y3z3
CMR: xyz =0
Cho các số x,y,z không âm thỏa mãn x+y+z=1. CMR: x+2y+z\(\ge\)4(1-x)(1-y)(1-z)
Cho ba số x, y, z thỏa mãn: xyz<0 và x+y+z=-3
Tìm GTLN của biểu thức P=x4+y4+z4/xyz
cho x,y,z thỏa mãn : x+y+z=1/2 ; 1/y^2+1/z^2+1/xyz=4 ; 1/x+1/y+1/z>0. tính Q = (x^2019+z^2019)+(y^2017+z^2017)(x^2021+y^2021)
Cho x,y,z>0 thỏa mãn x+y+z=1. CMR: x^4+y^4/x^3+y^3 + y^4+z^4/y^3+z^3 + z^4+x^4/z^3+x^3 >=1
Cho x, y, z > 0 thỏa mãn \(x^2+y^2+z^2=1\) . CMR: \(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{1}{3}\)
cho các số dương x, y, z thỏa mãn xyz-16/x+y+z=0
Tìm GTNN của biểu thức P=(x+y)(x+z)