Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thế Miên An
Xem chi tiết
phung tuan anh phung tua...
13 tháng 1 2022 lúc 14:29

B

Vũ Minh Cường
16 tháng 10 2022 lúc 16:10

YRGFGYSTHRBHFYSVGSYG

Vũ Minh Cường
16 tháng 10 2022 lúc 16:11

GYE4F4GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

Phanquocvuong
Xem chi tiết
Huyen Vu
13 tháng 9 2016 lúc 8:00

 a1/a2 = b1/b2 = c1/c2 = k

a1=k.a2, b1=k.b2, c1=k.c2

Biểu thức trở thành

√(k.a2 + k.b2 + k.c2).(a2 + b2 + c2)= √k.a2.a2 + √k.b2.b2 + √k.c2.c2

√k.(a2+b2+c2)2 = a2. √k + b2. √k + c2. √k

(a2+b2+c2). √k = (a2+b2+c2). √k (hiển nhiên đúng)

Suy ra điều phải chứng minh

Nguyen Vo  Song Nga
Xem chi tiết
Phong Trịnh
9 tháng 12 2021 lúc 20:47

Câu 4: Cho bảng tính như hình bên: 

 

Hãy điền kết quả vào bảng sau:

 

Công thức tại ô D1

Kết quả

=SUM(A1:C3,1)

 

=AVERAGE(A2:C2)

 

=MIN(A2:C2,4)

 

=MAX(A3:C3)

 

=AVERAGE(A3:C3) + MAX(A2:C2)

 

Phạm Tú Uyên
Xem chi tiết
hello7156
Xem chi tiết
Lấp La Lấp Lánh
22 tháng 12 2021 lúc 16:55

\(P=2+\dfrac{2}{b}+a+\dfrac{a}{b}+2+\dfrac{2}{a}+b+\dfrac{b}{a}=\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(a+\dfrac{1}{2a}\right)+\left(b+\dfrac{1}{2b}\right)+\left(\dfrac{3}{2a}+\dfrac{3}{2b}\right)+4\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}+2\sqrt{a.\dfrac{1}{2a}}+2\sqrt{b.\dfrac{1}{2b}}+2\sqrt{\dfrac{3}{2a}.\dfrac{3}{2b}}+4=6+2\sqrt{2}+\dfrac{3}{\sqrt{ab}}\)

Ta lại có: \(a^2+b^2\ge2\sqrt{a^2.b^2}=2ab\left(BĐT.Cauchy\right)\Rightarrow2\left(a^2+b^2\right)\ge4ab\Rightarrow\sqrt{ab}\le\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}=\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow P\ge6+2\sqrt{2}+\dfrac{3}{\sqrt{ab}}\ge6+2\sqrt{2}+\dfrac{3}{\dfrac{\sqrt{2}}{2}}=6+5\sqrt{2}\)

\(minP=6+5\sqrt{2}\Leftrightarrow a=b=\dfrac{\sqrt{2}}{2}\)

 

Hoa Nguyễn Lệ
Xem chi tiết
Hiếu Cao Huy
13 tháng 6 2018 lúc 9:24

sai đề bn ơi

Trịnh Công Mạnh Đồng
13 tháng 6 2018 lúc 21:30

Sai phần tử rùi pn ơi

Hoa Nguyễn Lệ
14 tháng 6 2018 lúc 20:10

Mình thấy mình viết đúng theo đề mà khocroi

Choon_Hee
Xem chi tiết

`#3107.101107`

`-3^2 + {-54 \div [-2^8 + 7] * (-2)^2}`

`= -9 + [-54 \div (-256 + 7) * 4]`

`= -9 + [-54 \div (-249) * 4]`

`= -9 + (18/83 * 4)`

`= -9 + 72/83`

`= -675/83`

______

`31 * (-18) + 31 * (-81) - 31`

`= 31 * (-18 - 81 - 1)`

`= 31 * (-100)`

`= -3100`

___

`(-12) * 47 + (-12) * 52 + (-12)`

`= (-12) * (47 + 52 + 1)`

`= (-12) * 100`

`= -1200`

___

`13 * (23 + 22) - 3 * (17 + 28)`

`= 13 * 45 - 3 * 45`

`= 45 * (13 - 3)`

`= 45 * 10`

`= 450`

____

`-48 + 48 * (-78) + 48 * (-21)`

`= 48 * (-1 - 78 - 21)`

`= 48 * (-100)`

`= -4800`

Nguyễn Phong
Xem chi tiết
Thanh Ngân
17 tháng 6 2019 lúc 19:34

\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)

\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)

\(=2a^2.2b^2-4a^2b^2=0\)

\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)

\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)

\(=\left[4-11x\right]^2\)

\(=16-88x+121x^2\)

chúc bn học tốt

Nguyễn Phong
Xem chi tiết
Phạm Thị Thùy Linh
19 tháng 6 2019 lúc 21:04

\(b,\)\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=2^{64}-1-2^{64}=-1\)

Duc Loi
19 tháng 6 2019 lúc 21:17

a) Đặt \(A=\left(\frac{1}{2}+1\right).\left(\frac{1}{4}+1\right).\left(\frac{1}{16}+1\right)...\left(1+\frac{1}{2^{2n}}\right)\)

Rút gọn:  \(A=\frac{2+1}{2}.\frac{4+1}{4}.\frac{16+1}{16}...\frac{2^{2.n}+1}{2^{2.n}}=\frac{2^{2.0}+1}{2^{2.0}}.\frac{2^{2.1}+1}{2^{2.1}}.\frac{2^{2.2}+1}{2^{2.2}}...\frac{2^{2.n}+1}{2^{2.n}}\)

\(\Rightarrow A=\frac{\left(2^{2.0}+1\right).\left(2^{2.1}+1\right).\left(2^{2.2}+1\right)...\left(2^{2.n}+1\right)}{2^{2.0}.2^{2.1}.2^{2.2}...2^{2.n}}.\)

b) Đặt \(B=\left(2+1\right).\left(2^2+1\right).\left(2^4+1\right).\left(2^8+1\right).\left(2^{16}+1\right).\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2-1\right).\left(2+1\right).\left(2^2+1\right)...\left(2^{32}+1\right)-2^{64}=\left(2^2-1\right).\left(2^2+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2^4-1\right).\left(2^4+1\right).\left(2^8+1\right)...\left(2^{32}+1\right)-2^{64}=\left(2^8-1\right).\left(2^8+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2^{16}-1\right).\left(2^{16}+1\right).\left(2^{32}+1\right)-2^{64}=\left(2^{32}-1\right).\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=2^{64}-1-2^{64}=-1\)Vậy B =-1.