tìm x, y biết:
4x2+4y2+4xy-12x-12y+12=0
tìm x;y
a) 4x2+13y+12xy−18y−4x+104x2+13y+12xy−18y−4x+10
b) 4x2+12xy+9y2+4y2−18y−4x+104x2+12xy+9y2+4y2−18y−4x+10
c) (2x+3y)2−2(2x+3y)+1+4y2−12y+9(2x+3y)2−2(2x+3y)+1+4y2−12y+9
d) (2x+3y−1)+(2y−3)2=0
Bài 1: Phân tích đa thức thành nhân tử: a) 4y3 + 16y2 + 16y b) 8x2-48x+6xy-36y c) 8x2-48x-6xy+36y d) a2 –2ab+b2 –4 e) 4–x2 –4xy–4y2 f) 8a2 –16a+8ax–16x g) 16–4x2 +8xy–4y2 h) –4x2 –16xy–16y2 Bài 2: Tìm x, biết: a) x3 – 6x2 + 9x = 0 b) 5x(x–6)+3x–18=0 c) 5x(x – 6) – 18 + 3x = 0 d) 5x(x – 6) – 3x + 18 = 0 e) (2x – 3)2 = (5 – x)2 f) (2x + 1)2 = (3x – 2)2 g) 16(2x–3)=-25x2 (3–2x)
b: \(8x^2-48x+6xy-36y\)
\(=8x\left(x-6\right)+6y\left(x-6\right)\)
\(=2\left(x-6\right)\left(4x+3y\right)\)
d: \(a^2-2ab+b^2-4\)
\(=\left(a-b\right)^2-4\)
\(=\left(a-b-2\right)\left(a-b+2\right)\)
Tìm GTLN của bt:
T= -2x2 -4y2 -4x+12y+4xy+2002
\(T=-2\left(x^2+y^2+1-2xy+2x-2y\right)-2y^2+8y+2004\)
\(T=-2\left(x-y+1\right)^2-2\left(y-2\right)^2+2012\le2012\)
\(T_{max}=2012\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(\hept{\begin{cases}2x^2+5xy+2y^2+x+y+1=0\\x^2+4xy+y^2+12x+12y+10=0\end{cases}}\)
Lấy 2 lần phương trình trên trừ đi phương trình dưới là xong.
\(\left\{{}\begin{matrix}2x^2+5xy+2y^2+x+y+1=0\\x^2+y^2+4xy+12x+12y+10=0\end{matrix}\right.\)
\(2.\left(1\right)-\left(2\right)\) \(\Rightarrow3x^2+3y^2+6xy-10x-10y-8=0\)
\(\Leftrightarrow3\left(x+y\right)^2-10\left(x+y\right)-8=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=4\\x+y=-\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=4-x\\y=-\frac{2}{3}-x\end{matrix}\right.\)
Thế vào 1 trong 2 pt ban đầu là xong
\(\left\{{}\begin{matrix}2x^2+5xy+2y^2+x+y+1=0\\x^2+4xy+y^2+12y+12x+10=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\left(a\ge4b\right)\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(2x^2+2y^2+4xy\right)+\left(x+y\right)+1+xy=0\\\left(x^2+2xy+y^2\right)+12\left(x+y\right)+10+2xy=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)^2+\left(x+y\right)+1+xy=0\\\left(x+y\right)^2+12\left(x+y\right)+10+2xy=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a^2+a+1+b=0\\a^2+12a+10+2b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a^2+2a+2+2b=0\\a^2+12a+10+2b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a^2+a+1+b=0\\3a^2-10a-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a^2+a+1+b=0\\\left[{}\begin{matrix}a=4\\a=-\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=4\\b=-37\end{matrix}\right.\\\left\{{}\begin{matrix}a=-\frac{2}{3}\\b=-\frac{11}{9}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow...\)
Tìm giá trị nhỏ nhất của biểu thức :
A=5+2x2+4y2+4xy-8x-12y
Lời giải:
$A=(x^2+4y^2+4xy)+x^2+5-8x-12y$
$=(x+2y)^2-6(x+2y)+x^2+5-2x$
$=(x+2y)^2-6(x+2y)+9+(x^2-2x+1)-5$
$=(x+2y-3)^2+(x-1)^2-5\geq 0+0-5=-5$
Vậy $A_{\min}=-5$. Giá trị này đạt được khi $x+2y-3=x-1=0$
$\Leftrightarrow x=1; y=1$
tìm x y biết 2x^2+4y^2+4xy-10x-12y+13=0
1) Tìm x, y, z
a) 9x2 +y2 + 2z2 – 18x +4z – 6y +20 = 0
b) 5x2 +5y2 +8xy+2y – 2x+2 = 0
c) 5x2 +2y2 + 4xy – 2x + 4y +5 = 0
d) x2 + 4y2 + z2 =2x + 12y – 4z – 14
e) x2 +y2 – 6x + 4y +2= 0
2) Phân tích đa thức thành nhân tử
a) 3xy2 – 3x3 – 6xy +3x
b) 3x2 + 11x + 6
c) –x3 – 4xy2 + 4x2y +16x
d) xz – x2 – yz +2xy – y2
e) 4x2 – y2 – 6x + 3y
f) X4 – x3 – 10x2 + 2x +4
g) (x3 – x2 + x)(121 – 25y2 – 10y) – (x3 – x2 + x) – (121 – 25y2 – 10y) +1
h) X4 – 14x3 + 71x2 – 154x + 120
Giúp mik vs cần gấp!!!
\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11
e: Ta có: \(x^2-6x+y^2+4y+2=0\)
\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Dấu '=' xảy ra khi x=3 và y=-2