\(T=-2\left(x^2+y^2+1-2xy+2x-2y\right)-2y^2+8y+2004\)
\(T=-2\left(x-y+1\right)^2-2\left(y-2\right)^2+2012\le2012\)
\(T_{max}=2012\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(T=-2\left(x^2+y^2+1-2xy+2x-2y\right)-2y^2+8y+2004\)
\(T=-2\left(x-y+1\right)^2-2\left(y-2\right)^2+2012\le2012\)
\(T_{max}=2012\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Tìm GTLN,GTNN của bt:
A=4x+3 / x2 +1
Tìm GTLN,GTNN của bt:
A=3-4x / x2 +1
tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức
a/ x2-2x+3
b/ -x2-4x+3
c/ 2x2+4x+5
d/ x2+2y2+9z2-2x+12y+6z+24
e/ x^2+y^2-x+6y+1
f/ x^2-4x+5+y^2+2y
g/ x^2-4xy+5y^2+10x-22y+28
h/ x(6-x)+74+x
a, Tìm GTNN: A = \(\dfrac{x^2-2x+2013}{x^2}\) ; x>0
b, Tìm GTLN và GTNN của: B = \(\dfrac{4x+1}{4x^2+2}\)
Tìm GTLN của A= \(\frac{x^2+4x+19}{x^2+4x+7}\)
Cho x,y,z là các số thực thỏa mãn:
-2≤x,y,z≤5 và x+2y+3z≤9. Tìm GTLN của bt:
M= x2 +2y2 +3z2
tìm max biểu thức -2x^2-10y^2+4xy+4x+4y+2013
Tìm GTLN của N=
4x+1 |
4x2+2 |
\(D=4x^2+2y^2+4xy-2x-6y+10\)
tìm gtnn