Tìm a,b,c biết.
1/ab*bc+1/bc*ca+1/ca*ab=11/3321
Tìm các chữ số a,b,c thỏa mãn: \(\frac{1}{\overline{ab}.\overline{bc}}+\frac{1}{\overline{bc}.\overline{ca}}+\frac{1}{\overline{ca}.\overline{ab}}=\frac{11}{3321}\)
1.Tìm các chữ số a,b,c biết:\(\frac{1}{\overline{ab}.\overline{bc}}+\frac{1}{\overline{bc}.\overline{ca}}+\frac{1}{\overline{ca}.\overline{ab}}=\frac{11}{3321}\)
2.Tìm tất cả các số nguyên dương x;y thoả mãn:(x+y)4=40x+41
1.
a) \(A=\frac{\left(\frac{2018}{1}-1\right)\left(\frac{2018}{2}-1\right)...\left(\frac{2018}{1000}-1\right)}{\left(\frac{1000}{1}+1\right)\left(\frac{1000}{2}+1\right)...\left(\frac{1000}{1007}+1\right)}\)
b) Tìm x biết 378% của x kém A 55 đơn vị.
2. Tìm a, b, c sao cho : \(\frac{\overline{ab}.\overline{bc}.\overline{ca}}{\overline{ab}+\overline{bc}+\overline{ca}}=\frac{3321}{11}\)
tìm số tự nhiên a ; b ; c biết 11 / ab x bc + 1/ bc x ca + 1/ ca x ab
Bài này có thiếu ko bạn
biết \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=3\)tìm gtnn của \(P=\frac{ab^2}{a+b}+\frac{bc^2}{b+c}+\frac{ca^2}{c+a}\)
theo giả thiết => a+b+c=3abc
ta có:
\(P>=\frac{\left(b\sqrt{a}+a\sqrt{c}+c\sqrt{b}\right)^2}{2\left(a+b+c\right)}\)(theo cauchy schawarz)\(=\frac{\left(b\sqrt{a}+c\sqrt{b}+a\sqrt{c}\right)^2}{6abc}\)
=>\(P>=\frac{\left(3\sqrt[3]{abc\sqrt{abc}}\right)^2}{6abc}\)(cô si)=3/2
dấu = xảy ra khi và chỉ khi a=b=c=\(\frac{1}{2}\)
Cho a+b+c=1. Tìm GTLN của
\(A=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
Cần thêm điều kiện a;b;c dương
\(\sqrt{\dfrac{ab}{c+ab}}=\sqrt{\dfrac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)
Tương tự: \(\sqrt{\dfrac{bc}{a+bc}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\) ; \(\sqrt{\dfrac{ca}{b+ac}}\le\dfrac{1}{2}\left(\dfrac{c}{b+c}+\dfrac{a}{a+b}\right)\)
Cộng vế với vế:
\(A\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a+b+c=1. Tìm GTLN của
\(A=\dfrac{bc}{\sqrt{a+bc}}+\dfrac{ca}{\sqrt{b+ca}}+\dfrac{ab}{\sqrt{c+ab}}\)
Cần điều kiện a;b;c dương
\(\dfrac{bc}{\sqrt{a.1+bc}}=\dfrac{bc}{\sqrt{a\left(a+b+c\right)+bc}}=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right)\)
Tương tự: \(\dfrac{ca}{\sqrt{b+ca}}\le\dfrac{1}{2}\left(\dfrac{ca}{a+b}+\dfrac{ca}{b+c}\right)\) ; \(\dfrac{ab}{\sqrt{c+ab}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)
Cộng vế với vế:
\(A\le\dfrac{1}{2}\left(\dfrac{bc+ca}{a+b}+\dfrac{bc+ab}{a+c}+\dfrac{ca+ab}{b+c}\right)=\dfrac{1}{2}\left(a+b+c\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
tìm các số hữu tỉ a,b,c biết :
1) ab=2 ;bc=3 ;ca =54
2) ab=5/3,bc=4/5,ca=3/4
3)
a(a+b+c)=-12
b(a+b+c)=18
c(a+b+c)=30
1) ab=2 (I); bc=3 (II); ca=54 (III)
Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 324 ⇒ abc = ±18
(II) ⇒ a= ±6 ; (I) ⇒ b= ±1/3 ; (II) ⇒ c= ±9
2) ab=5/3 (I); bc=4/5 (II); ca=3/4 (III)
Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 1 ⇒ abc = ±1
(II) ⇒ a= ±5/4 ; (I) ⇒ b= ±4/3 ; (II) ⇒ c= ±3/5
3) a(a+b+c)= -12 (I)
b(a+b+c)= 18 (II)
c(a+b+c)= 30 (III)
Lấy (I)+(II)+(III) ⇒ (a+b+c)2 = 36 ⇒ a+b+c = ±6
TH1 : a=6 ⇒ a= -12/6 = -2 ; b= 18/6 = 3 ; c= 30/6 = 5
TH2 : a=-6 ⇒ a= -12/-6 = 2 ; b= 18/-6 = -3 ; c= 30/-6 = -5
Cho a, b,c khác 0 thỏa: 1/a + 1/b+ 1/c =0, đặt P=bc-ac/ab+ac-ab/bc+ab-bc/ac , Q=bc/ac-ab+ca/ab-bc+ab/bc-ca. Tính P.Q