tìm GTLN hoặc GTNN của 6n-3/4n-6
2) tìm gtln hoặc gtnn của R=xy biết :
a) x+y=6. b) x-y=4
3) tìm n€ Z để giá trị Biểu Thức A chia hết cho giá trị Biểu Thức B
a) A=8n^2-4n+1 và B = 2n+1
b) A=4n^3-2n^2-6n+5 và B=2n-1
Bài 3:
a: \(\Leftrightarrow8n^2+4n-8n-4+5⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-1;2;-3\right\}\)
b: \(\Leftrightarrow4n^3-2n^2-6n+3+2⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{1;0\right\}\)
Tìm n thuộc N để phân số A = 6n-3/4n-6 đạt GTLN. Tìm GTLN đó
1) phân tích đa thức thành nhân tử :
a) x^2-10x+9 b) x^2-2x-15 c) 3x^2-7x+2 d) x^3-12+x^2
2) tìm gtln hoặc gtnn của R=xy biết :
a) x+y=6. b) x-y=4
3) tìm n€ Z để giá trị Biểu Thức A chia hết cho giá trị Biểu Thức B
a) A=8n^2-4n+1 và B = 2n+1
b) A=4n^3-2n^2-6n+5 và B=2n-1
Toán 8 tập 1 ôn tập chương 1
Bài 1:
a)x2-10x+9
=x2-x-9x+9
=x(x-1)-9(x-1)
=(x-9)(x-1)
b)x2-2x-15
=x2+3x-5x-15
=x(x+3)-5(x+3)
=(x-5)(x+3)
c)3x2-7x+2
=3x2-x-6x+2
=x(3x-1)-2(3x-1)
=(x-2)(3x-1)x^3-12+x^2
d)x3-12+x2
=x3+3x2+6x-2x2-6x-12
=x(x2+3x+6)-2(x2+3x+6)
=(x-2)(x2+3x+6)
Tìm n thuộc N để 6n-3/4n-6 đạt GTNN
Cho M = \(\dfrac{6n-3}{4n-6}\) tìm GTLN của M
Cho A=(4n+1)/(2n+3). Tìm n để:
a)Tìm GTLN của A
b)Tìm GTNN của A
Đề bài này thiếu điều kiện của n rồi bạn
Tìm GTNN hoặc GTLN
f(x) = x - (6-2x2), với 0≤x≤√3
\(f\left(x\right)=2x^2+x-6\)
Xét \(f\left(x\right)\) trên \(\left[0;\sqrt{3}\right]\)
\(-\frac{b}{2a}=-\frac{1}{4}\notin\left[0;\sqrt{3}\right]\)
\(f\left(0\right)=-6;f\left(\sqrt{3}\right)=\sqrt{3}\)
\(\Rightarrow f\left(x\right)_{min}=f\left(0\right)=-6\)
\(f\left(x\right)_{max}=f\left(\sqrt{3}\right)=\sqrt{3}\)
Tim n thuoc N de:
A= 6n-3/4n-6 co GTLN
nho ghi cach lam nha
thanks
Tìm GTNN hoặc GTLN của D= x- x^2+3
D = x - x2 + 3
D = - x2 + x + 3
D = - ( x2 - x - 3 )
D = - [ x2 - 2 . x . 1 / 2 + ( 1 / 2 )2 - ( 1 / 2 )2 - 3 ]
D = - [ ( x - 1 / 2 )2 - 13 / 4 ]
D = - ( x - 1 / 2 )2 + 13 / 4 \(\le\)13 / 4
Dấu " = " xảy ra \(\Leftrightarrow\)x - 1 / 2 = 0
\(\Rightarrow\)x = 1 / 2
Max D = 13 / 4 \(\Leftrightarrow\)x = 1 / 2
D=x-x^2+3
D= -[x^2 -x +1/4 ] + 13/4
D=-(x-1/2)^2 +13/4
Vì -(x-1/2)^2<=0 => D<=13/4
Dấu = xảy ra <=> x-1/2=0 <=> x=1/2
\(D=x-x^2+3\)
\(D=-\left(x^2-x+3\right)\)
\(D=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(D=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(D=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}\le\frac{-11}{4}\)
Dấu bằng xảy ra
\(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy Max \(D=\frac{-11}{4}\)\(\Leftrightarrow x=\frac{1}{2}\)