So sánh:
\(\frac{1}{\frac{2}{3}}\)và \(\frac{\frac{1}{2}}{3}\)
Tính rồi so sánh kết quả của:
a)\(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right)\) và \(\frac{3}{4} + \frac{1}{2} - \frac{1}{3};\) b)\(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right)\) và \(\frac{2}{3} - \frac{1}{2} - \frac{1}{3}\)
a) \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right) = \frac{9}{{12}} + \left( {\frac{6}{{12}} - \frac{4}{{12}}} \right) = \frac{9}{{12}} + \frac{2}{{12}} = \frac{{11}}{{12}}\)
\(\frac{3}{4} + \frac{1}{2} - \frac{1}{3} = \frac{9}{{12}} + \frac{6}{{12}} - \frac{4}{{12}} = \frac{{15}}{{12}} - \frac{4}{{12}} = \frac{{11}}{{12}}\)
Vậy \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right)\) = \(\frac{3}{4} + \frac{1}{2} - \frac{1}{3}\)
b)\(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right) = \frac{4}{6} - \left( {\frac{3}{6} + \frac{2}{6}} \right) = \frac{4}{6} - \frac{5}{6} = \frac{{ - 1}}{6}\)
\(\frac{2}{3} - \frac{1}{2} - \frac{1}{3} = \frac{4}{6} - \frac{3}{6} - \frac{2}{6} = \frac{1}{6} - \frac{2}{6} = \frac{{ - 1}}{6}\)
Vậy \(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right)\)=\(\frac{2}{3} - \frac{1}{2} - \frac{1}{3}\).
`#3107`
`a)`
`3/4 + (1/2 - 1/3)`
`= 3/4 + (3/6 - 2/6)`
`= 3/4 + 1/6`
`= 11/12`
`3/4 + 1/2 - 1/3`
`= 9/12 + 6/12 - 4/12`
`= (9 + 6 - 4)/12`
`= 11/12`
Vì `11/12 = 11/12`
`=> 3/4 + (1/2 - 1/3) = 3/4 + 1/2 - 1/3`
`b)`
`2/3 - (1/2 + 1/3)`
`= 2/3 - (3/6 + 2/6)`
`= 2/3 - 5/6`
`= -1/6`
`2/3 - 1/2 - 1/3`
`= 4/6 - 3/6 - 2/6`
`= (4 - 3 - 2)/6`
`= -1/6`
Vì `-1/6 = -1/6`
`=> 2/3 - (1/2 + 1/3) = 2/3 - 1/2 - 1/3`
\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..+\frac{1}{3^{99}}+\frac{1}{3^{100}}\) và \(\frac{1}{2}\)
So sánh
ta có: \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{100}}+\frac{1}{3^{101}}\)
\(\Rightarrow A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^{101}}< \frac{1}{3}\)
\(\Rightarrow\frac{2}{3}A< \frac{1}{3}\)
\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)
\(\Rightarrow A< \frac{1}{2}\)
so sánh \(\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.............+\frac{1}{3^{99}}\right)và\frac{1}{2}\)
So sánh \(P=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2013^2}+\frac{1}{2014^2}\)và \(Q=1\frac{3}{4}\)
So sánh :
\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)và 1
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{50}}\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)
\(2A-A=1-\frac{1}{2^{50}}\)
\(A=1-\frac{1}{2^{50}}< 1\)
\(\Rightarrow A< 1\)
SO SÁNH:
A=\(\frac{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+.....+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2016}+\frac{1}{2017}}\)
VÀ
B=2017
Mấy bài dạng này biết cách làm là oke
Ta có :
\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(A=\frac{\left(2016-1-1-...-1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(A=\frac{\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(A=2017\)
Vậy \(A=2017\)
Chúc bạn học tốt ~
\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(A=\frac{2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(A=\frac{\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
(số 2016 tách ra làm 2016 số 1 rồi cộng vào từng phân số, còn dư 1 số viết thành 2017/2017 nghe bạn!!! :)))
\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(A=2017\)
Hãy so sánh : \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\frac{4}{5!}+....+\frac{99}{100!}\) và 1
a) so sánh \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}\) và 4
b)\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\)và 1
a)\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}=\frac{71}{20}\) và \(4=\frac{4}{1}=\frac{80}{20}\)
mà 80 > 7 suy ra \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}< 4\)
b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{7}{8}\) và \(1=\frac{8}{8}\)
mà 7 < 8 suy ra \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}< 1\)
So sánh:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) và\(\frac{3}{4}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
....................
.....................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
Nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}^2< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}^2^2< 1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{99}{100}\)> \(\frac{3}{4}\)thì sao mà so sánh được
Nguyễn Quang Trung quên quy đồng phân số 3/4 để so sánh với 99/100 kìa
Cho \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}};B=\frac{1}{2}\).so sánh A và B
Lời giải:
$A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}$
$3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}$
$\Rightarrow 3A-A=1-\frac{1}{3^{100}}$
$\Rightarrow 2A=1-\frac{1}{3^{100}}<1$
$\Rightarrow A< \frac{1}{2}$
$\Rightarrow A< B$