Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Long
Xem chi tiết
Akai Haruma
8 tháng 3 2021 lúc 1:19

Lời giải:

$2^n+34=2.2^2+3.2^3+....+n.2^n$

$2^{n+1}+68=2.2^3+3.2^4+....+n.2^{n+1}$

Trừ theo vế:

$2^n+34=n.2^{n+1}-(8+2^3+2^4+...+2^n)$

$n.2^{n+1}-2^n-42=2^3+2^4+...+2^n$

$n.2^{n+2}-2^{n+1}-84=2^4+....+2^{n+1}$

Trừ theo vế:

$n.2^{n+1}-2^n-42=2^{n+1}-8$

$2^n(2n-3)=34=17.2$

$\Rightarrow 2^n=2$ và $2n-3=17$ (vô lý)

Vậy không tìm được $n$.

Thái Hoàng Thục Anh
Xem chi tiết
Nguyễn Đình Dũng
7 tháng 10 2015 lúc 12:37

A = 2.22 + 3.23 + 4.24 + ... + n.2n 

2.A = 2.2+ 3.2+ 4.2+ ...+ n.2n+1

=> A - 2.A = 2.22 + (3.2- 2.23)  + (4.2- 3.24) + ...+ (n - n + 1).2- n.2n+1

=> A = 2.2+ 2+ 2+ ..+ 2- n.2n+ 1  = 22 + (2+ 2+ ....+ 2n+ 1) - (n+1).2n+1

=> A =  - 22 -  (2+ 2+ ....+ 2n+ 1) + (n+1).2n+1

Tính B = 2+ 2+ ....+ 2n+ 1 => 2.B =  2+ ....+ 2n+ 1 + 2n+2 => 2B - B = 2n+2 - 22 => B = 2n+2 - 22

Vậy A = 22 - 2n+2 + 22 + (n+1).2n+1 = (n+1).2n+1 - 2n+ 2 = 2n+1.(n + 1 - 2) = (n-1).2n+1 = 2(n-1).2n

Theo bài cho  A = 2(n-1).2n = 2n+10 => 2(n - 1) = 210 => n - 1 = 2 = 512 => n = 513

Vậy.............

Hoàng Ngọc Nam
10 tháng 10 2016 lúc 19:32

n= 513, tui chỉ biết đáp án nhưng không biết cách làm

Lê Thị Ngọc Châm
5 tháng 4 2017 lúc 20:12

đặt A=2+2^2+2^3+...+2^n

     2A=2^2+2^3+2^4+...+2^n+1 (1)

  2A-A=2\(^{n+1}\)-2

     A=2\(^{n+1}\)-2  (2)

từ (1)(2) =>2 + 2\(^2\)+2\(^3\)+...+2\(^n\)=2\(^{n+1}\)-2

                      2\(^2\)+2\(^3\)+...+2\(^n\)=2\(^{n-1}\)-2\(^2\)

                              ..............................

                                             2\(^n\)=2\(^{n-1}\)-2\(^n\)

cộng vế với vế ta có 

 2+2.2\(^2\)+3.2\(^3\)+...+n.2\(^n\)= n.2\(^{n+1}\)- (2+2\(^2\)+2\(^3\)+...+2\(^n\))

2+(2.2\(^2\)+3.2\(^3\)+...+n.2\(^n\)=n.2\(^{n+1}\)- A

     2+2\(^{n+10}\)=n.2\(^{n+1}\)-2\(^{n+1}\)+2

            2\(^{n+10}\)=2\(^{n+1}\).(n-1)

             2\(^{n+1}\). 2\(^9\)=2\(^{n+1}\).(n-1)

=>n-1=2\(^9\)

=>n=2^9+1=513

vậy n=513

Hà Trí Kiên
Xem chi tiết

a, 5n+1 - 5n-1 = 1254.23.3

5n-1.(52 - 1) = 1254.24

5n-1.24         = 1254.24

5n-1             = 1254

5n-1             = (53)4

5n-1            = 512

n - 1           = 12

n                = 12 + 1

n                = 13

b,22n-1 + 22n+2 = 3.211

   22n-1.(1 + 23) = 3.211

  22n-1.9 = 3.211

 22n-1      = 211: 3

22n        = 212 : 3 (xem lại đề bài em nhá)

 

Best Friend Forever
Xem chi tiết
Xyz OLM
23 tháng 1 2020 lúc 7:47

Đặt S = 2.22 + 3.23 + 4.24 + ... + (n - 1).2n - 1 + n.2n 

<=> S = 2S - S = (2.23 + 3.24 +  4.25 + .... + (n - 1).2n + n. 2n + 1) - (2.22 + 3.23 + 4.24 + ... + (n - 1).2n - 1 + n.2n)

                S = (2.23 - 3.23) + (3.24 - 4.24) + (4.25 - 5.25) + .... + [(n - 1).2n - n.2n] + n.2n + 1 - 2.22

                   = -(23 + 24 + 25 + ... + 2n) + n.2n + 1 - 8

Đặt A = 23 + 24 + 25 + ... + 2n

  <=> 2A - A = (24 + 25 + 26 + ... + 2n + 1) - (23 + 24 + 25 + ... + 2n

  <=> A = 2n + 1 - 23 

Khi đó S = - 2n - 1 + 23 + n.2n - 1 - 8

              = 2n - 1.(n - 1) = 2n + 34

         => n - 1 = 2n + 34 : 2n - 1

          => n - 1 = 2n + 34 - n + 1

          => n - 1 = 235

          => n = 235 + 1

Khách vãng lai đã xóa
cường xo
23 tháng 1 2020 lúc 7:57

N=34359738369 nha

Khách vãng lai đã xóa
IR IRAN(Islamic Republic...
23 tháng 1 2020 lúc 8:05

Cường xo tính lại kết quả của Xyz mà cũng làm

Khách vãng lai đã xóa
TXT Channel Funfun
Xem chi tiết
Hà Trí Kiên
Xem chi tiết
Nguyễn Đức Trí
13 tháng 7 2023 lúc 18:25

a) \(5^{n+3}-5^{n+1}=5^{12}.120\Leftrightarrow5^{n+1}.\left(5^2-1\right)=5^{12}.5.24\)

\(\Leftrightarrow24.5^{n+1}=5^{13}.24\Leftrightarrow5^{n+1}=5^{13}\Leftrightarrow n+1=13\Leftrightarrow n=12\)

b) \(2^{n+1}+4.2^n=3.2^7\)

\(\Leftrightarrow2^n\left(2+4\right)=3.2^7\Leftrightarrow6.2^n=3.2^7\Leftrightarrow2^n=2^6\Leftrightarrow n=6\)

c) \(3^{n+2}-3^{n+1}=486\)

\(\Leftrightarrow3^{n+1}.\left(3-1\right)=486\Leftrightarrow2.3^{n+1}=486\Leftrightarrow3^{n+1}=243\)

\(\Leftrightarrow3^n=243:3=81=3^3\Leftrightarrow n=3\)

d) \(3^{2n+3}-3^{2n+2}=2.3^{10}\)

\(\Leftrightarrow3^{2n+2}.\left(3-1\right)=2.3^{10}\)

\(\Leftrightarrow3^{2n+2}.2=2.3^{10}\Leftrightarrow3^{2n+2}=3^{10}\Leftrightarrow2n+2=10\Leftrightarrow2n=8\Leftrightarrow n=4\)

Ngô Chí Thành
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2020 lúc 8:25

Xét khai triển:

\(\left(1+2x\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1.2x+C_{2n+1}^2\left(2x\right)^2+...+C_{2n+1}^{2n+1}\left(2x\right)^{2n+1}\)

Đạo hàm 2 vế:

\(2\left(2n+1\right)\left(1+2x\right)^{2n}=2C_{2n+1}^1+2^2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n+1}C_{2n+1}^{2n+1}x^{2n}\)

\(\Leftrightarrow\left(2n+1\right)\left(1+2x\right)^{2n}=C_{2n+1}^1+2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}x^{2n}\)

Cho \(x=-1\) ta được:

\(2n+1=C_{2n+1}^1-2C_{2n+1}^2+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}\)

\(\Rightarrow2n+1=2019\Rightarrow n=1009\)

thanh nguyen van long
Xem chi tiết
Dương
Xem chi tiết