giải pt 8x2 + 11x +1 = (x+1)\(\sqrt{4x^2+6x+5}\)
Giải PT: \(4x^2-11x+10=\left(x-1\right).\sqrt{2x^2-6x+2}\)
giải pt :
a, \(x^2-4x-2=2\sqrt{x^3+1}\)
b, \(x^2-7x+1=4\sqrt{x^4+x^2+1}\)
c, \(3\sqrt{x^2+4x-5}+\sqrt{x-3}=\sqrt{11x^2+25+2}\)
Hãy giải các pt sau :
a, 3x + 6x - 5 = 17x
b, 8( 4x + 2 ) = 20x + 11x
c, \(\sqrt{x}^2\) - 2x + 1 = 0
a, 3x + 6x - 5 = 17x
9x - 5 = 17x
9x - 17x = 5
- 8x = 5
x = -5/8
b, 8(4x + 2 ) = 20x + 11x
32x + 16 = 31x
32x - 31x = -16
x = -16
c, \(\sqrt{x}^2\) - 2x + 1 = 0
\(\left(\sqrt{x}\right)^2\) - 2x + 1 = 0
\(\left(\sqrt{x}+1\right)^2\) = 0
\(\sqrt{x+1}\) = 0
x + 1 = 0
x = -1
\(a;3x+6x-5=17x\)
\(\Leftrightarrow3x+6x-17x=5\)
\(\Leftrightarrow-8x=5\)
\(\Leftrightarrow x=\frac{-5}{8}\)
\(b;8\left(4x+2\right)=20x+11x\)
\(\Leftrightarrow32x+16=32x\)
\(\Leftrightarrow32x-32x=16\left(L\right)\)
\(c;\sqrt{x}^2-2x+1=0\)
\(\Leftrightarrow x-2x+1=0\)
\(\Leftrightarrow-x=-1\)
\(\Leftrightarrow x=1\)
giải pt sau
a) \(\sqrt{1-4x+4x^2}=5\)
b)\(\sqrt{x^2+6x+9}=3x-1\)
Help me plsssssssssssss
a) \(\sqrt{1-4x+4x^2}=5\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)
\(\Leftrightarrow\left|1-2x\right|=5\)
\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
b) \(\sqrt{x^2+6x+9}=3x-1\)
\(\Leftrightarrow\sqrt{\left(x+3\right)^2=3x-1}\)
\(\Leftrightarrow\left|x+3\right|=3x-1\)
\(\Leftrightarrow x+3=3x-1\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
\(a,\sqrt{1-4x+4x^2}=5\\ \Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\\ \Leftrightarrow\left|1-2x\right|=5\)
\(TH_1:x\le\dfrac{1}{2}\)
\(1-2x=5\\ \Leftrightarrow x=-2\left(tm\right)\)
\(TH_2:x\ge\dfrac{1}{2}\)
\(-1+2x=5\\ \Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{-2;3\right\}\)
\(b,\sqrt{x^2+6x+9}=3x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\\ \Leftrightarrow\left|x+3\right|=3x-1\)
\(TH_1:x\ge-3\\ x+3=3x-1\\ \Leftrightarrow-2x=-4\Leftrightarrow x=2\left(tm\right)\)
\(TH_2:x< 3\\ -x-3=3x-1\\ \Leftrightarrow-4x=2\\ \Leftrightarrow x=-\dfrac{1}{2}\left(tm\right)\)
Vậy \(S=\left\{2;-\dfrac{1}{2}\right\}\)
giải pt :
a,\(3\sqrt{x^2+4x-5}+\sqrt{x-3}=\sqrt{11x^2+25x+2}\)
b,\(\sqrt{5x^2+14x+9}-5\sqrt{x+1}=\sqrt{x^2-x-2}\)
c, \(x^2-8x+17=3\sqrt{x^3-7x+6}\)
Giải phương trình:
\(8x^2+11x+1=\left(x+1\right).\sqrt{4x^2+6x+5}\)
Điều kiện tự làm nha:
\(8x^2+11x+1=\left(x+1\right)\sqrt{4x^2+6x+5}\)
\(\Leftrightarrow\left(8x^2+11x+1\right)^2=\left(x+1\right)^2.\left(4x^2+6x+5\right)\)
\(\Leftrightarrow30x^4+81x^3+58x^2+3x-2=0\)
\(\Leftrightarrow\left(5x^2+6x-1\right)\left(6x^2+9x+2\right)=0\)
Tự làm nốt nhé.
Giải pt:
\(\dfrac{6x^2+4x+8}{x+1}=5\sqrt{2x^2+3}\)
ĐKXĐ: \(x\ne-1\)
\(\dfrac{6x^2+4x+8}{x+1}=5\sqrt{2x^2+3}\)
\(\Rightarrow6x^2+4x+8=5\left(x+1\right)\sqrt{2x^2+3}\)
\(\Leftrightarrow2\left(2x^2+3\right)-5\left(x+1\right)\sqrt{2x^2+3}+2\left(x+1\right)^2=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3}=a\\x+1=b\end{matrix}\right.\)
\(\Rightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{2x^2+3}=2\left(x+1\right)\\2\sqrt{2x^2+3}=x+1\end{matrix}\right.\) (\(x\ge-1\))
\(\Rightarrow\left[{}\begin{matrix}2x^2+3=4\left(x+1\right)^2\\4\left(2x^2+3\right)=\left(x+1\right)^2\end{matrix}\right.\) (\(x\ge-1\))
\(\Leftrightarrow...\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
giải pt :
a, \(3\sqrt[3]{3x+5}=x^3+3x^2+3x-1\)
b, \(\sqrt[3]{6x+1}=8x^3-4x-1\)
a.
\(3\sqrt[3]{3\left(x+1\right)+2}=\left(x+1\right)^3-2\)
Đặt \(\sqrt[3]{3\left(x+1\right)+2}=y\) ta được:
\(\left\{{}\begin{matrix}3y=\left(x+1\right)^3-2\\3\left(x+1\right)+2=y^3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3y+2=\left(x+1\right)^3\\3\left(x+1\right)+2=y^3\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^3-y^3=3y-3\left(x+1\right)\)
\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right]=0\)
\(\Leftrightarrow x+1=y\)
\(\Leftrightarrow\left(x+1\right)^3=y^3\)
\(\Leftrightarrow\left(x+1\right)^3=3\left(x+1\right)+2\)
\(\Leftrightarrow x^3+3x^2-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)^2=0\)
b.
\(\Leftrightarrow8x^3-\left(6x+1\right)+2x-\sqrt[3]{6x+1}=0\)
Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{6x+1}=b\end{matrix}\right.\) ta được:
\(a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow2x=\sqrt[3]{6x+1}\)
\(\Leftrightarrow8x^3-6x-1=0\)
Đặt \(f\left(x\right)=8x^3-6x-1\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên R, đồng thời \(f\left(x\right)\) bậc 3 nên có tối đa 3 nghiệm
\(f\left(-1\right)=-3< 0\) ; \(f\left(-\dfrac{1}{2}\right)=1>0\) \(\Rightarrow f\left(-1\right).f\left(-\dfrac{1}{2}\right)< 0\)
\(\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(-1;-\dfrac{1}{2}\right)\) (1)
\(f\left(0\right)=-1\Rightarrow f\left(0\right).f\left(-\dfrac{1}{2}\right)< 0\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(-\dfrac{1}{2};0\right)\) (2)
\(f\left(1\right)=1\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(0;1\right)\) (3)
Từ (1);(2);(3) \(\Rightarrow\) cả 3 nghiệm của \(f\left(x\right)\) đều thuộc \(\left(-1;1\right)\)
Do đó, ta chỉ cần tìm nghiệm của \(f\left(x\right)\) với \(x\in\left(-1;1\right)\)
Do \(x\in\left(-1;1\right)\), đặt \(x=cosu\)
\(\Rightarrow8cos^3u-6cosu-1=0\)
\(\Leftrightarrow2\left(4cos^3u-3cosu\right)=1\)
\(\Leftrightarrow2cos3u=1\)
\(\Leftrightarrow cos3u=\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}3u=\dfrac{\pi}{3}+k2\pi\\3u=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\\u=-\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
Vậy nghiệm của pt là: \(x=cosu=\left\{cos\left(\dfrac{\pi}{9}\right);cos\left(\dfrac{5\pi}{9}\right);cos\left(\dfrac{7\pi}{9}\right)\right\}\)