Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
mac mai trang
Xem chi tiết

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022

B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\) 

B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\) 

B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))

Vậy B > C 

 

FG REPZ
Xem chi tiết
Monkey.D.Luffy
17 tháng 5 2022 lúc 18:14

\(C=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2022^2}\)

\(C=\dfrac{1}{\left(2+3+4+...+2022\right)^2}\)

\(C=\dfrac{1}{\left(2022-2+1\right)^2}\)

\(C=\dfrac{1}{2021^2}\)

\(C=\dfrac{1}{2021\cdot2021}\)

\(C=\dfrac{1\div2021}{2021}\)

\(C=1\)

Vì \(1>\dfrac{13}{18}\)

\(\Rightarrow C>\dfrac{13}{18}\)

 

Hoàng Hải Anh
Xem chi tiết
Hoàng Hải Anh
22 tháng 3 2022 lúc 22:28

mọi người ơi giúp em vs ạ , e đang rất cần 

 

Trần Tuấn Hoàng
23 tháng 3 2022 lúc 8:58

\(1+2+...+n=\dfrac{\left(\dfrac{n-1}{1}+1\right).\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)}{2}\)

\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)

\(=3\left(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+...+2022}\right)\)

\(=3\left(\dfrac{1}{\dfrac{2.\left(2+1\right)}{2}}+\dfrac{1}{\dfrac{3.\left(3+1\right)}{2}}+...+\dfrac{1}{\dfrac{2022.\left(2022+1\right)}{2}}\right)\)

\(=3\left(\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{2022.2023}\right)\)

\(=3.2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)\)

\(=6.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)

\(=6.\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)\)

\(=6.\dfrac{2021}{4046}=3.\dfrac{2021}{2023}=\dfrac{6063}{2023}=\dfrac{18189}{6069}\)

\(\dfrac{10}{3}=\dfrac{20230}{6069}>\dfrac{18189}{6069}=M\)

 

Võ Thị Phương Trà
Xem chi tiết
Võ Thị Phương Trà
19 tháng 3 2022 lúc 23:46

i giúp em vớiiiiii

 

Võ Thị Phương Trà
Xem chi tiết

\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)

\(=\dfrac{3}{\dfrac{2\left(2+1\right)}{2}}+\dfrac{3}{\dfrac{3\left(3+1\right)}{2}}+...+\dfrac{3}{\dfrac{2022\left(2022+1\right)}{2}}\)

\(=\dfrac{6}{2\left(2+1\right)}+\dfrac{6}{3\left(3+1\right)}+...+\dfrac{6}{2022\cdot2023}\)

\(=\dfrac{6}{2\cdot3}+\dfrac{6}{3\cdot4}+...+\dfrac{6}{2022\cdot2023}\)

\(=6\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2022\cdot2023}\right)\)

\(=6\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)

\(=6\cdot\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)=6\cdot\dfrac{2021}{4046}=\dfrac{12126}{4046}< 3\)

mà \(3< \dfrac{10}{3}\)

nên \(M< \dfrac{10}{3}\)

Sir Nghi
Xem chi tiết
bui duy phu
16 tháng 7 2023 lúc 21:28

a) Ta có:

2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122  020+122  021

2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122  019+122  020

Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122  019+122  020

                             −(12+122+123+...+122020+122021)−12+122+123+...+122  020+122  021

Do đó A=1−122021<1�=1−122021<1.

Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.

Vậy A < B.

 

gia bảo
Xem chi tiết
hải yến
4 tháng 3 2022 lúc 15:49

Đây dang lớp mấy vây

gia bảo
Xem chi tiết
Nguyễn Thị Kim Tuyến
Xem chi tiết
Nguyễn Ngọc Anh Minh
9 tháng 5 2022 lúc 10:08

\(2022A=2022+2022^2+2022^3+2022^4+...+2022^{2018}\)

\(2021A=2022A-A=2022^{2018}-1\Rightarrow A=\dfrac{2022^{2018}-1}{2021}\)

\(\Rightarrow A< B\)