Chứng minh rằng nếu \(\frac{a}{b}\)nhỏ hơn \(\frac{c}{d}\); b và d > 0 thì \(\frac{a}{b}
Chứng minh rằng : nếu a/b < c/d ( b > 0 ; d > 0 ) thì a/b < a+c/b+d< c/d
a) tìm 4 phân số lớn hơn \(\frac{-1}{2}\)và nhỏ hơn \(\frac{-1}{3}\)
b) Chứng minh rằng : \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)( với a, b, m\(\in Z\); m > 0 )
cho hai số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(b>0,d>0) CHỨNG MINH RẰNG \(\frac{a}{b}\)<\(\frac{c}{d}\)nếu ad nhỏ hơn bc và ngược lại
a) Cho a, b, c > 0. Chứng minh rằng M = \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không là số nguyên
b) Cho a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng ab + bc + ca nhỏ hơn hoặc bằng 0
Chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\)nếu biết
\(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
Chứng minh rằng : Nếu \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\) thì a = choặc a + b + c + d = 0
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\Rightarrow\left(a+b\right)\left(d+a\right)=\left(c+d\right)\left(b+c\right)\)
=> a2+ab+ad+db=cb+c2+db+dc
=> a2+ab+ad+db-cb-c2-db-dc=0
=>( a2-c2) + (ab -bc) +( ad -dc)=0
=>(a+c)(a-c) +b(a-c) +d(a-c)=0
=>(a-c)(a+c+b+d)=0
=>\(\left[\begin{array}{nghiempt}a-c=0\\a+b+c+d=0\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}a=c\\a+b+c+d=0\end{array}\right.\)
Chứng minh rằng
:Nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a+b}{b}=\frac{c+d}{d}\)
\(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}\)
\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\) (đpcm)
Chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\)nếu biết
\(\frac{a+b}{b+d}=\frac{a-c}{b-d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)( 1 )
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\)( 2 )
từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
Biết a,,b,c là độ dài ba cạnh của một tam giác và 0 nhỏ hơn hoặc bằng t nhỏ hơn hoặc bằng 1 chứng minh rằng :
\(\sqrt{\frac{a}{b+c-a}}+\sqrt{\frac{b}{c+a-b}}+\sqrt{\frac{c}{a+b-c}}\)lớn hơn hoặc bằng \(2\sqrt{t+1}\)
Chứng minh rằng : nếu\(\frac{a}{b}< \frac{c}{d}\left(b,d>0\right)\)thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
+) \(ad+ab< bc+ab\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )
+) \(ad+cd< bc+cd\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)
Vì \(b,d>0\Rightarrow bd>0\)
\(\Rightarrow ad< bc\)
Ta lại có:
\(\frac{a}{b}=\frac{a\left(b+d\right)}{b\left(b+d\right)}=\frac{ab+ad}{b\left(b+d\right)}\)
\(\frac{a+c}{b+d}=\frac{b\left(a+c\right)}{b\left(b+d\right)}=\frac{ab+bc}{b\left(b+d\right)}\)
Vì \(b,d>0\)
Nên \(b\left(b+d\right)>0\)và \(d\left(b+d\right)>0\) \(\left(1\right)\)
Mà \(ad< bc\Leftrightarrow ab+ad< ab+bc\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)ta có: \(\frac{ab+ad}{b\left(b+d\right)}>\frac{ab+bc}{b\left(b+d\right)}\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(\cdot\right)\)
Ta lại có:
\(\frac{a+c}{b+d}=\frac{d\left(a+c\right)}{d\left(b+d\right)}=\frac{ad+cd}{d\left(b+d\right)}\)
\(\frac{c}{d}=\frac{c\left(b+d\right)}{d\left(b+d\right)}=\frac{bc+cd}{d\left(b+d\right)}\)
Mà \(ad< bc\Rightarrow ad+cd< bc+cd\left(3\right)\)
Từ \(\left(1\right)\)và \(\left(3\right)\)ta có:
\(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(\cdot\cdot\right)\)
Từ \(\left(\cdot\right)\)và \(\left(\cdot\cdot\right)\)ta có: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)