Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Hà
Xem chi tiết
hatake kakashi
Xem chi tiết
hotboy
Xem chi tiết
Trương Kim Chi
Xem chi tiết
Vương Hàn
Xem chi tiết
nhoc quay pha
6 tháng 11 2016 lúc 16:46

a=?

nhoc quay pha
6 tháng 11 2016 lúc 16:53

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\Rightarrow\left(a+b\right)\left(d+a\right)=\left(c+d\right)\left(b+c\right)\)

=> a2+ab+ad+db=cb+c2+db+dc

=> a2+ab+ad+db-cb-c2-db-dc=0

=>( a2-c2) + (ab -bc) +( ad -dc)=0

=>(a+c)(a-c) +b(a-c) +d(a-c)=0

=>(a-c)(a+c+b+d)=0

=>\(\left[\begin{array}{nghiempt}a-c=0\\a+b+c+d=0\end{array}\right.\)

=>\(\left[\begin{array}{nghiempt}a=c\\a+b+c+d=0\end{array}\right.\)

Nguyễn Ngọc Sáng
6 tháng 11 2016 lúc 18:29

đề như đệt

nguyen minh thu
Xem chi tiết
Đinh Đức Hùng
22 tháng 2 2017 lúc 20:49

\(\frac{a}{b}=\frac{c}{d}\)

\(\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}\)

\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\) (đpcm)

Trương Kim Chi
Xem chi tiết
Chàng trai lạnh lùng
4 tháng 8 2017 lúc 17:02

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)( 1 )

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\)( 2 )

từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

Trần Quốc Lộc
8 tháng 8 2017 lúc 17:32

Đề sai

Phạm Minh Thành
Xem chi tiết
Đặng Hoàng Uyên Lâm
Xem chi tiết
Thanh Tùng DZ
5 tháng 6 2019 lúc 14:22

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

+) \(ad+ab< bc+ab\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )

+) \(ad+cd< bc+cd\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Nguyễn Tấn Phát
5 tháng 6 2019 lúc 14:24

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)

 Vì \(b,d>0\Rightarrow bd>0\)

\(\Rightarrow ad< bc\)

Ta lại có:

\(\frac{a}{b}=\frac{a\left(b+d\right)}{b\left(b+d\right)}=\frac{ab+ad}{b\left(b+d\right)}\)

\(\frac{a+c}{b+d}=\frac{b\left(a+c\right)}{b\left(b+d\right)}=\frac{ab+bc}{b\left(b+d\right)}\)

Vì \(b,d>0\)

Nên \(b\left(b+d\right)>0\)và \(d\left(b+d\right)>0\)         \(\left(1\right)\)

Mà \(ad< bc\Leftrightarrow ab+ad< ab+bc\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)ta có: \(\frac{ab+ad}{b\left(b+d\right)}>\frac{ab+bc}{b\left(b+d\right)}\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(\cdot\right)\)

Ta lại có:

\(\frac{a+c}{b+d}=\frac{d\left(a+c\right)}{d\left(b+d\right)}=\frac{ad+cd}{d\left(b+d\right)}\)

\(\frac{c}{d}=\frac{c\left(b+d\right)}{d\left(b+d\right)}=\frac{bc+cd}{d\left(b+d\right)}\)

Mà \(ad< bc\Rightarrow ad+cd< bc+cd\left(3\right)\)

Từ \(\left(1\right)\)và \(\left(3\right)\)ta có:

\(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(\cdot\cdot\right)\)

Từ \(\left(\cdot\right)\)và \(\left(\cdot\cdot\right)\)ta có: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)