\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\Rightarrow\left(a+b\right)\left(d+a\right)=\left(c+d\right)\left(b+c\right)\)
=> a2+ab+ad+db=cb+c2+db+dc
=> a2+ab+ad+db-cb-c2-db-dc=0
=>( a2-c2) + (ab -bc) +( ad -dc)=0
=>(a+c)(a-c) +b(a-c) +d(a-c)=0
=>(a-c)(a+c+b+d)=0
=>\(\left[\begin{array}{nghiempt}a-c=0\\a+b+c+d=0\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}a=c\\a+b+c+d=0\end{array}\right.\)