cho 3 số thực dương a,b,c thoả mãn a/(b+c) + b/(c+a) + c/(a+b) = 3/2 . cmr: a=b=c
Cho 3 số thực dương a,b,c thoả mãn a+b+c=3.CMR (a³+ab²):(a²+b+b²) + (b³+bc²):(b²+c+c²) + (c³+ca²):(c²+a+a²) >=2
Ta có: \(\dfrac{a^3+ab^2}{a^2+b+b^2}=a-\dfrac{ab}{a^2+b+b^2}\ge a-\dfrac{\sqrt[3]{a}}{3}\)
Tương tự:
\(\Rightarrow VT\ge a+b+c-\dfrac{\Sigma\sqrt[3]{a}}{3}=3-\dfrac{\Sigma\sqrt[3]{a}}{3}\)
Áp dụng BĐT cô si chi 3 số dương, ta có:
\(a+1+1\ge3\sqrt[3]{a}\Rightarrow\dfrac{\sqrt[3]{a}}{3}\le\dfrac{a+2}{9}\)
Tương tự:
\(\Rightarrow VT\ge3-\dfrac{a+b+c+6}{9}=3-1=2\left(đpcm\right)\)
Dấu "=" xảy ra <=> a=b=c=1
Ai giải giúp mk với bt khó v :<
À mà chỉ giải bằng bđt AM-GM nhé, nếu có thêm bổ đề thì chứng minh chi tiết hộ mk :)
1. Cho ba số thực dương a,b,c thoả mãn a+b+c=3
CMR : \(a.\sqrt[3]{3-b+c}+b.\sqrt[3]{3-c+a}+c.\sqrt[3]{3-a+b}\le3.\sqrt[3]{3}\)
2. Cho 3 số thực dương a,b,c thoả mãn abc=2
CMR: \(a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\)
3. Cho 2 số thực dương x,y thoả mãn x+y+xy=3
CMR: \(\sqrt{\frac{x^2}{x^2+3}}+\sqrt{\frac{y^2}{y^2+3}}\le1\)
cho số thực dương a b c thoả mãn a+b+c=< 3/2 cmr a+b+c+1/a^2+1/b^2+1/c^2>=27/2
Cho các số thực dương a, b, c thoả mãn:
\(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\dfrac{3}{2}\)
Cmr: \(a^2+b^2+c^2=\dfrac{3}{2}\)
Cho các số thực dương a,b và c thoả mãn: \(\dfrac{1}{a+2}\)+\(\dfrac{1}{b+2}\)+\(\dfrac{1}{c+2}\)\(\ge\dfrac{3}{2}\)
CMR: \(a+b+c\ge ab+bc+ca\)
\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)
\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)
\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)
\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)
\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow\) đpcm
Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ
cho a,b,c là 3 số thực dương thoả mãn: a+b+c=3>CMR
\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\)
Đặt: \(P=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
Ta có:
\(\frac{a+1}{b^2+1}=a-\frac{ab^2-1}{b^2+1}\ge a-\frac{ab^2-1}{2b}=a-\frac{ab}{2}+\frac{1}{2b}\)
Tương tự ta có:
\(\frac{b+1}{c^2+1}\ge b-\frac{bc}{2}+\frac{1}{2c},\frac{c+1}{a^2+1}\ge c-\frac{ca}{2}+\frac{1}{2a}\)
\(\Rightarrow P\ge a+b+c-\frac{ab+bc+ca}{2}+\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3-\frac{\left(a+b+c\right)^2}{6}+\frac{1}{2}\left(\frac{\left(1+1+1\right)^2}{a+b+c}\right)\)
\(=3-\frac{9}{6}+\frac{1}{2}.\frac{9}{3}=3\)
Dấu bằng xảy ra khi a=b=c=1
mấy dạng kiểu này bạn cứ dùng cô-si ngược là ra
Cho a,b,c là các số thực dương thoả mãn a+b+c=1
CMR (a+bc)/(b+c)+(b+ca)/(c+a)+(c+ab)/(a+b) >=2
Cho a,b,c là 3 số dương bất kì thoả mãn hệ thức (a+b)(a+c)(b+c)=8abc. Cmr a=b=c
áp dụng bất đẳng thức cô si ta có
(a+b)(b+c)(c+a) >= \(2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{\left(abc\right)^2}=8abc\)
dấu = xảy ra <=> a=b=c
vậy (a+b)...=8abc <=> a=b=c
Cho 3 số dương a,b,c có thoả mãn a+b+c = 3.CMR 1/a+1/b+1/c >= 3
Áp dụng BĐT AM - GM:
\(a+b+c\ge3\sqrt[3]{abc}\); \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Rightarrow3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)