Ta chứng minh điều ngược lại đúng mà đây là BĐT Nesbitt tìm trên mạng đầy cách c/m
Ta chứng minh điều ngược lại đúng mà đây là BĐT Nesbitt tìm trên mạng đầy cách c/m
Ai giải giúp mk với bt khó v :<
À mà chỉ giải bằng bđt AM-GM nhé, nếu có thêm bổ đề thì chứng minh chi tiết hộ mk :)
1. Cho ba số thực dương a,b,c thoả mãn a+b+c=3
CMR : \(a.\sqrt[3]{3-b+c}+b.\sqrt[3]{3-c+a}+c.\sqrt[3]{3-a+b}\le3.\sqrt[3]{3}\)
2. Cho 3 số thực dương a,b,c thoả mãn abc=2
CMR: \(a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\)
3. Cho 2 số thực dương x,y thoả mãn x+y+xy=3
CMR: \(\sqrt{\frac{x^2}{x^2+3}}+\sqrt{\frac{y^2}{y^2+3}}\le1\)
Cho a,b,c là các số thực dương thoả mãn a+b+c=1
CMR (a+bc)/(b+c)+(b+ca)/(c+a)+(c+ab)/(a+b) >=2
Cho a,b,c là 3 số dương bất kì thoả mãn hệ thức (a+b)(a+c)(b+c)=8abc. Cmr a=b=c
Cho các số thực dương a,b,c thoả mãn a + b + c = 3. tìm giá trị lớn nhất của P = √a+b + √b+c + √c + a
Cho a b c là các số thực dương thoả mãn 1/a +1/b + 1/c =1 cmr (a-1)(b-1)(c-1)=< 1/8 (a+1)(b+1)(c+1)
cho 3 số thực dương a, b, c thỏa mãn a+b+c=3. CMR:1/(a2+a)+1/(b2+b)+1/(c2+c) > hoac = 3/2
cho 3 số thực dương a, b, c thỏa mãn a+b+c=3. CMR:1/(a2+a)+1/(b2+b)+1/(c2+c) > hoac = 3/2
a,cho x+y>=6;x,y>0,tìm min của p=5x+3y+10/x+8/y
b, a;b;c là 3 số thực dương thoả mãn a+2b+3c>=20. Tìm min của a+b+c+3/a+9/b+4/c
c,Cho x;y>0 thoả mãn x+y<=1, tìm min A=(1-1/x)-(1/y^2)
d,Cho a;b;c >0, a+b+c=<3/2, tìm min của A=a+b+c+1/a+1/b+1/c
e, Cho a,b dương,a;b=<1, tìm min của P=1/(a^2+b^2) +1/ab
g,Cho a;b;c>0, a+b+c=<1, tìm min của P=a+b+c+2(1/a+1/b+1/c)
cho a,b,c là 3 số dương thoả mãn abc=1 chứng minh rằng 1/a^3(b+c)+1/b^3(a+c)+1/c^3(a+b)>=3/2