Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thị Liên Đỗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2023 lúc 20:49

a: A=2,5*1,6+4,8=4+4,8=8,8

b: A=20,3

=>2,5y+4,8=20,3

=>2,5y=15,5

=>y=6,2

Trần Đăng	Khoa
Xem chi tiết
Etermintrude💫
6 tháng 10 2023 lúc 21:45

loading...

CHÚC EM HỌC TỐT NHÁhihi

Giang Trần Đình Hoàng
Xem chi tiết
Thân Hoài Phương
Xem chi tiết
Đức Phạm
21 tháng 6 2017 lúc 7:17

\(A=2013+540\div\left(x-6\right)\)

a, Giá trị biểu thức của A khi x = 16 là: 

\(A=2013+540\div\left(16-6\right)\)

\(A=2013+540\div10\)

\(A=2013+54\)

\(A=2067\)

b, Để A là giá trị lớn nhất thì x phải bằng 1 

Ta có : x - 6 = 1

=> x = 1 + 6

=> x = 7 

Vậy  x phải bằng 7 để A có giá trị lớn nhất 

A=2013+540÷(x−6)

a, Giá trị biểu thức của A khi x = 16 là: 

A=2013+540÷(16−6)

A=2013+540÷10

A=2013+54

A=2067

b, Để A là giá trị lớn nhất thì x phải bằng 1 

Ta có : x - 6 = 1

=> x = 1 + 6

=> x = 7 

Vậy  x phải bằng 7 để A có giá trị lớn nhất 

Le Xuan Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 22:35

a: Sửa đề: \(A=\dfrac{\sqrt{x}}{\sqrt{x}+6}\)

Khi x=4 thì \(A=\dfrac{\sqrt{4}}{\sqrt{4}+6}=\dfrac{2}{2+6}=\dfrac{2}{8}=\dfrac{1}{4}\)

b: \(B=\dfrac{4}{x-1}+\dfrac{\sqrt{x}+3}{\sqrt{x}+1}-\dfrac{5}{1-\sqrt{x}}\)

\(=\dfrac{4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}\)

\(=\dfrac{4+\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)+5\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{4+x+2\sqrt{x}-3+5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+7\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)

c: \(P=A\cdot B=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+6}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

Để P<0 thì \(\dfrac{\sqrt{x}}{\sqrt{x}-1}< 0\)

mà \(\sqrt{x}>0\)

nên \(\sqrt{x}-1< 0\)

=>\(\sqrt{x}< 1\)

=>0<=x<1

Ngọc Trúc
Xem chi tiết
T Ấ N 亗▿
Xem chi tiết
Ngô Hải Nam
29 tháng 1 2023 lúc 9:40

đề bài lỗi bn ơi

Nguyễn Xuân Trường
Xem chi tiết
Darlingg🥝
27 tháng 11 2021 lúc 20:29

bạn ktra lại đề ở chỗ 2/3/-x 

Khách vãng lai đã xóa
Le Xuan Mai
Xem chi tiết
乇尺尺のレ
2 tháng 12 2023 lúc 23:06

\(a.x=3-2\sqrt{2}\\ \Rightarrow\sqrt{x}=\sqrt{3-2\sqrt{2}}\\ =\sqrt{2-2\sqrt{2}+1}\\ =\sqrt{\left(\sqrt{2}-1\right)^2}\\ =\left|\sqrt{2}-1\right|\\ =\sqrt{2}-1\left(vì\sqrt{2}>1\right)\)

Thay \(\sqrt{x}=\sqrt{2}-1\) vào A ta được

\(A=\dfrac{\sqrt{2}-1}{1+\sqrt{2}-1}=\dfrac{\sqrt{2}-1}{\sqrt{2}}=\dfrac{\sqrt{2}-2}{2}\)

\(b.B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}-\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\\ B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{10-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{10-5\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\\ B=\dfrac{x-3\sqrt{x}-\sqrt{x}+3-x+4-10+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{1}{\sqrt{x}-2}\)

\(c,P=A:B\\ P=\dfrac{\sqrt{x}}{1+\sqrt{x}}:\dfrac{1}{\sqrt{x}-2}\\ P=\dfrac{x-2\sqrt{x}}{1+\sqrt{x}}\)

\(P=\dfrac{-\sqrt{x}\left(-\sqrt{x}+2\right)}{\sqrt{x}+1}\)

Có: \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}+1\ge1\left(I\right)\)

Lại có: \(\sqrt{x}\ge0\)

\(\Rightarrow-\sqrt{x}\le0\\ \Rightarrow-\sqrt{x}+2\le2\)

mà \(-\sqrt{x}\le0\)

\(\Rightarrow-\sqrt{x}\left(-\sqrt{x}+2\right)\ge2\)

Kết hợp với \(\left(I\right)\) \(\Rightarrow\) \(P=\dfrac{-\sqrt{x}\left(-\sqrt{x}+2\right)}{\sqrt{x}+1}\ge2\)

Vậy gtnn của P = \(2\) khi \(x=10+4\sqrt{6}\)

Nguyễn Lê Phước Thịnh
2 tháng 12 2023 lúc 23:03

a: Khi \(x=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\) thì 

\(A=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}}{1+\sqrt{\left(\sqrt{2}-1\right)^2}}=\dfrac{\sqrt{2}-1}{1+\sqrt{2}-1}=\dfrac{\sqrt{2}-1}{\sqrt{2}}=\dfrac{2-\sqrt{2}}{2}\)

b: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}-\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}-2}\)