Giải pt :(x+1)⁴+(x-3)⁴=1
1 ) giải pt căn 10 -x cộng căn x+3 = x bình - 2x +6
2) giải pt căn x+1 cộng căn x+6 trừ căn x-2 = 4
3) cho pt ( x-2) × ( x bình + m x +m -1 ) = 0 . Tìm m để pt có 3 ng pb
4 ) cho pt x × ( x+1) × ( x+2) × ( x+3) = m . Tìm m để pt đã cho có nghiệm
Bài 1:
a) Giải PT sau: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
b) Giải PT sau: |2x+6|-x=3
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
Giải các pt sau ( Pt bậc hai một ẩn)
x(mũ2)+7x-3=x(x-1)-1
2x(mũ2)-5x-3=(x+1).(x-1)+3
giải pt (x-3)(x+1)+4(x-3)căn x+1/x-3=-3
Giúp tớ với.
Bài 1 : cho pt : 4x^2 - 25 + k^2 + 4kx = 0
1. Giải pt với k =0
2. Giải pt với k = -3
3. Tìm các giá trị của k để pt nhận nghiệm là 2.
Bài 2 : Tính
1. x + 1/x-1 ( dấu / là phân số nhé ) - x-1/ x+1 = 16/x^2 - 1
2. 12/x^2-4 - x+1/x-2 + x+7/x+2 = 0
3. 12/8+x^3 = 1 + 1/1+2
4. x + 25/2x^2-50 - x+5/x^2-5x = 5-x/2x^2+10
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự
Cho pt ẩn x : \(\dfrac{x+a}{x+3}+\dfrac{x-3}{x-a}=2\)
a, Giải pt với a = -1
b, Giải pt với a = 2
c, Giải pt với a = 3
d, Tìm các giá trị của a biết phương trình nhận x=1 làm nghiệm
-Thank you-
a) Thay a = -1 vào phương trình
\(\dfrac{x-1}{x+3}+\dfrac{x-3}{x+1}=2\)
\(\Rightarrow\dfrac{x^2-1+x^2-9}{\left(x+3\right)\left(x+1\right)}=2\)
\(\Rightarrow2x^2-10=2\left(x+3\right)\left(x+1\right)=2x^2+8x+6\)
\(\Rightarrow2x^2+8x+6-2x^{10}+10=0\)
\(\Rightarrow8x+16=0\Rightarrow x=-2\)
b, c Làm tương tự như câu a
d)
Phương trình nhận x = 1 làm nghiệm
=> \(\dfrac{1+a}{1+3}+\dfrac{1-3}{1-a}=2\)
\(\Rightarrow\dfrac{a+1}{4}+\dfrac{2}{a-1}=2\)
\(\Rightarrow\dfrac{a^2-1+8}{4\left(a-1\right)}=2\)
\(\Rightarrow a^2+7=2\left(4a-1\right)=8a-2\)
\(\Rightarrow a^2-8x+9=0\)
\(\Rightarrow\left[{}\begin{matrix}a=4+\sqrt{7}\\a=4-\sqrt{7}\end{matrix}\right.\)
1 cho hệ pt : { x+my=3
{mx + y = 1
a , giải hệ pt khi m=1
b, tìm m để hệ pt có nghiệm duy nhất
2 giải pt 1/x^2-1+ 5/x+1 - 1/x-1 = 1
1.:Cho pt 2x2 - (6m-3)x -3m+1
a) Giải pt với m=1
b) Tìm m để A= x²1 +x2 2 đạt GTNN
2. Giải pt
✓3 .x^2 -2✓3 .x +12 =0
Bài 1 :
a )Thế \(m=1\) vào phương trình ta được :
\(2x^2-3x-2=0\)
\(\Leftrightarrow2x^2+x-4x-2=0\)
\(\Leftrightarrow x\left(2x+1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{-\frac{1}{2};2\right\}\)
b ) Theo hệ thức vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\frac{6m-3}{2}\\x_1x_2=\frac{-3m+1}{2}\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(\frac{6m-3}{2}\right)^2-\frac{2\left(-3m+1\right)}{2}\)
\(=\frac{36m^2-36m+9}{4}+3m-1\)
\(=\frac{36m^2-36m+9+12m-4}{4}\)
\(=\frac{36m^2-24m+5}{4}\)
\(=\frac{36m^2-24m+4+1}{4}\)
\(=\frac{\left(6m-2\right)^2+1}{4}\ge\frac{1}{4}\)
Vậy GTNN của A là \(\frac{1}{4}\) . Dấu bằng xảy ra khi \(x=\frac{1}{3}\)
Cho pt x^2-(2m-3)x-1=0 giải pt với m =1
\(pt:x^2-\left(2m-3\right)x-1=0\)
\(Thay\cdot m=1:pt\Leftrightarrow x^2+x-1=0\\ \Delta=1^2-4.\left(-1\right).1=5>0\\ \Rightarrow\left\{{}\begin{matrix}x_1=\frac{-1+\sqrt{5}}{2}\\x_2=\frac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
Giải pt
`x^3+1/x^3=6(x+1/x)(x ne 0)`
`x^3+1/x^3=6(x+1/x)(x ne 0)`
`<=>(x+1/x)(x^2-1+1/x^2)=6(x+1/x)`
`<=>(x+1/x)(x^2-1+1/x^2-6)=0`
`<=>((x^2+1)/x)(x^2+1/x^2-7)=0`
`(x^2+1)/x ne 0(AA x)`
`=>x^2+1/x^2-7=0`
`=>x^2+2+1/x^2-9=0`
`<=>(x+1/x)^2-3=0`
`<=>(x+1/x+3)(x+1/x-3)=0`
`+)x+1/x+3=0`
`<=>(x^2+3x+1)/x=0`
`<=>x^2+3x+1=0`
`<=>x^2+3x+9/4=5/4`
`<=>(x+3/2)^2=5/4`
`<=>x=(+-\sqrt{5}-3)/2`
`+)x+1/x-3=0`
`<=>(x^2-3x+1)/x=0`
`<=>x^2-3x+1=0`
`<=>x^2-3x+9/4=5/4`
`<=>(x-3/2)^2=5/4`
`<=>x=(+-\sqrt{5}+3)/2`
Vậy `S={(\sqrt{5}-3)/2,(-\sqrt{5}-3)/2,(\sqrt{5}+3)/2,(-\sqrt{5}+3)/2}`
ĐK: \(x\ne0\)
\(PT\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left(x^2-1+\dfrac{1}{x^2}\right)=6\left(x+\dfrac{1}{x}\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left(x^2+\dfrac{1}{x^2}-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=0\\x^2+\dfrac{1}{x^2}-7=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\left(loai\right)\\x^4-7x^2+1=0\left(1\right)\end{matrix}\right.\)
Giải (1): \(\Leftrightarrow x^2=\dfrac{7\pm3\sqrt{5}}{2}\) \(\Rightarrow x=\pm\sqrt{\dfrac{7\pm3\sqrt{5}}{2}}\)