Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Thu Phan
Xem chi tiết
KYAN Gaming
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 4 2021 lúc 22:11

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)

\(\Leftrightarrow x^2-2x+12-8-x^2=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow-2x=-4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)

Nguyễn Lê Phước Thịnh
22 tháng 4 2021 lúc 22:12

b) Ta có: \(\left|2x+6\right|-x=3\)

\(\Leftrightarrow\left|2x+6\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy: S={-3}

Tạ Minh Phương
Xem chi tiết
THỊ QUYÊN BÙI
Xem chi tiết
Kami no Kage
Xem chi tiết
Nguyển Đình Lâm 202
13 tháng 3 2016 lúc 7:51

bai 1

1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0

<=>(2x)^2-5^2=0

<=>(2x+5)*(2x-5)=0

<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự

Giang Phạm
Xem chi tiết
Ánh Lê
25 tháng 2 2019 lúc 12:23

a) Thay a = -1 vào phương trình

\(\dfrac{x-1}{x+3}+\dfrac{x-3}{x+1}=2\)

\(\Rightarrow\dfrac{x^2-1+x^2-9}{\left(x+3\right)\left(x+1\right)}=2\)

\(\Rightarrow2x^2-10=2\left(x+3\right)\left(x+1\right)=2x^2+8x+6\)

\(\Rightarrow2x^2+8x+6-2x^{10}+10=0\)

\(\Rightarrow8x+16=0\Rightarrow x=-2\)

b, c Làm tương tự như câu a

d)

Phương trình nhận x = 1 làm nghiệm

=> \(\dfrac{1+a}{1+3}+\dfrac{1-3}{1-a}=2\)

\(\Rightarrow\dfrac{a+1}{4}+\dfrac{2}{a-1}=2\)

\(\Rightarrow\dfrac{a^2-1+8}{4\left(a-1\right)}=2\)

\(\Rightarrow a^2+7=2\left(4a-1\right)=8a-2\)

\(\Rightarrow a^2-8x+9=0\)

\(\Rightarrow\left[{}\begin{matrix}a=4+\sqrt{7}\\a=4-\sqrt{7}\end{matrix}\right.\)

Dương Ngọc Kiên
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
23 tháng 3 2019 lúc 17:13

Bài 1 :

a )Thế \(m=1\) vào phương trình ta được :

\(2x^2-3x-2=0\)

\(\Leftrightarrow2x^2+x-4x-2=0\)

\(\Leftrightarrow x\left(2x+1\right)-2\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=2\end{matrix}\right.\)

Vậy \(S=\left\{-\frac{1}{2};2\right\}\)

b ) Theo hệ thức vi-et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=\frac{6m-3}{2}\\x_1x_2=\frac{-3m+1}{2}\end{matrix}\right.\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(\frac{6m-3}{2}\right)^2-\frac{2\left(-3m+1\right)}{2}\)

\(=\frac{36m^2-36m+9}{4}+3m-1\)

\(=\frac{36m^2-36m+9+12m-4}{4}\)

\(=\frac{36m^2-24m+5}{4}\)

\(=\frac{36m^2-24m+4+1}{4}\)

\(=\frac{\left(6m-2\right)^2+1}{4}\ge\frac{1}{4}\)

Vậy GTNN của A là \(\frac{1}{4}\) . Dấu bằng xảy ra khi \(x=\frac{1}{3}\)

Đỗ Phương Dung
Xem chi tiết
Kiêm Hùng
21 tháng 4 2020 lúc 16:05

\(pt:x^2-\left(2m-3\right)x-1=0\)

\(Thay\cdot m=1:pt\Leftrightarrow x^2+x-1=0\\ \Delta=1^2-4.\left(-1\right).1=5>0\\ \Rightarrow\left\{{}\begin{matrix}x_1=\frac{-1+\sqrt{5}}{2}\\x_2=\frac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

Diệu Em Touka
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 21:46

 `x^3+1/x^3=6(x+1/x)(x ne 0)`

`<=>(x+1/x)(x^2-1+1/x^2)=6(x+1/x)`

`<=>(x+1/x)(x^2-1+1/x^2-6)=0`

`<=>((x^2+1)/x)(x^2+1/x^2-7)=0`

`(x^2+1)/x ne 0(AA x)`

`=>x^2+1/x^2-7=0`

`=>x^2+2+1/x^2-9=0`

`<=>(x+1/x)^2-3=0`

`<=>(x+1/x+3)(x+1/x-3)=0`

`+)x+1/x+3=0`

`<=>(x^2+3x+1)/x=0`

`<=>x^2+3x+1=0`

`<=>x^2+3x+9/4=5/4`

`<=>(x+3/2)^2=5/4`

`<=>x=(+-\sqrt{5}-3)/2`

`+)x+1/x-3=0`

`<=>(x^2-3x+1)/x=0`

`<=>x^2-3x+1=0`

`<=>x^2-3x+9/4=5/4`

`<=>(x-3/2)^2=5/4`

`<=>x=(+-\sqrt{5}+3)/2`

Vậy `S={(\sqrt{5}-3)/2,(-\sqrt{5}-3)/2,(\sqrt{5}+3)/2,(-\sqrt{5}+3)/2}`

Nguyễn Thị Ngọc Thơ
28 tháng 2 2021 lúc 21:50

ĐK: \(x\ne0\)

\(PT\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left(x^2-1+\dfrac{1}{x^2}\right)=6\left(x+\dfrac{1}{x}\right)\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)\left(x^2+\dfrac{1}{x^2}-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=0\\x^2+\dfrac{1}{x^2}-7=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\left(loai\right)\\x^4-7x^2+1=0\left(1\right)\end{matrix}\right.\)

Giải (1): \(\Leftrightarrow x^2=\dfrac{7\pm3\sqrt{5}}{2}\) \(\Rightarrow x=\pm\sqrt{\dfrac{7\pm3\sqrt{5}}{2}}\)