Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Ích Bách
Xem chi tiết
Pham Quoc Cuong
28 tháng 12 2017 lúc 21:30

a, \(x^4-6x^3+11x^2-6x+1=0\)

\(\Rightarrow\left(x^2-3x+1\right)^2=0\)

\(\Rightarrow x^2-3x+1=0\)

\(\Rightarrow x=\frac{\pm\sqrt{5}+3}{2}\)

Chúc bạn học tốt

Pain Thiên Đạo
28 tháng 12 2017 lúc 22:46

\(x^4-\left(6x^2-2x^2\right)+\left(9x^2-6x+1\right)=0\)

\(x^4-2x^2\left(3x-1\right)+\left(3x-1\right)^2=0\)

\(\left(x^2-3x+1\right)^2=0\)

tự làm

B) \(\left(6x^4-18x^3\right)+\left(13x^{^3}-39x^2\right)+\left(x-3x\right)-\left(2x-6\right)=0\)

\(6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)

\(\left(x-3\right)\left(6x^3+13x^2-2\right)=0\)

\(\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)\)

\(\left(x-3\right)\left\{6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right\}\)

\(\left(x-3\right)\left(x+2\right)\left(6x^2-x-1\right)\)

  \(\left(x-3\right)\left(x+2\right)\left(6x^2-3x+2x-1\right)\)

\(\left(x-3\right)\left(x+2\right)\left(3x\left(2x-1\right)+\left(2x-1\right)\right)\)

\(\left(x-3\right)\left(x+2\right)\left(2x-1\right)\left(3x+1\right)=0\)

câu C nghĩ đã

Lê Đình Tiến
22 tháng 8 2018 lúc 20:57

8X-5(5X^2-1)^2=-4

trịnh việt nguyên
Xem chi tiết
Minh Nguyen
2 tháng 3 2020 lúc 17:28

\(x^2-6x+9=0\)     (1)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của phương trình (1) là \(S=\left\{3\right\}\)

\(x^3-6x^2+11x-6=0\)

\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(2x-6\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x=3\)

hoặc \(x=1\)

hoặc \(x=2\)

Vậy tập nghiệm của phương trình (2) là \(S=\left\{1;2;3\right\}\)

Mà 2 phương trình trên có 1 nghiệm chung

\(\Rightarrow\)Tập nghiệm của 2 phương trình là \(S=\left\{3\right\}\)

Khách vãng lai đã xóa
Forever AF
Xem chi tiết
Trà My
26 tháng 4 2017 lúc 22:09

\(x^3-6x^2+11x-12=0\Leftrightarrow x^3-4x^2-2x^2+8x+3x-12=0\)

\(\Leftrightarrow x^2\left(x-4\right)-2x\left(x-4\right)+3\left(x-4\right)=0\Leftrightarrow\left(x-4\right)\left(x^2-2x+3\right)=0\)

<=> x-4=0 hoặc x2-2x+3=0

. Mà  \(x^2-2x+3=\left(x-1\right)^2+2\ge2>0\) nên x2-2x+3\(\ne\)0  => x-4=0 <=>x=4

Vậy pt có nghiệm x=4

Nguyễn Ngọc Tuệ Anh
26 tháng 4 2017 lúc 22:25

Mode setup-->5-->4-->1--->=--->-6--->=--->11---->=---->-12--->=--->= là bằng 4(casio calculator)

Ha Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 21:36

a:=>3x=15

=>x=5

b: =>8-11x<52

=>-11x<44

=>x>-4

c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)

\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)

Ngọc Diệu
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2020 lúc 20:13

Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\) ta được:

a/ \(x^2+\frac{1}{x^2}+6\left(x+\frac{1}{x}\right)+11=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

\(\Leftrightarrow t^2-2+6t+11=0\Leftrightarrow\left(t+3\right)^2=0\)

\(\Rightarrow t=-3\Rightarrow x+\frac{1}{x}=-3\Leftrightarrow x^2+3x+1=0\) (casio)

b/ \(x^2+\frac{1}{x^2}-10\left(x+\frac{1}{x}\right)+26=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

\(\Leftrightarrow t^2-2-10t+26=0\)

\(\Leftrightarrow t^2-10t+24=0\Rightarrow\left[{}\begin{matrix}t=6\\t=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{1}{x}=4\\x+\frac{1}{x}=6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-4x=1=0\\x^2-6x+1=0\end{matrix}\right.\) (casio)

Mai Linh
Xem chi tiết
Bùi Bích Phương
24 tháng 2 2016 lúc 11:38

\(x^3-6x^2+11x-6=0\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow\begin{cases}x-1=0\\x^2-5x+6=0\end{cases}\)

\(\Leftrightarrow x\in\left\{1;2;3\right\}\)

Đặng Minh Triều
24 tháng 2 2016 lúc 13:16

x3-6x2+11x-6=0

<=>x3-x2-5x2+5x+6x-6=0

<=>x2.(x-1)-5x.(x-1)+6.(x-1)=0

<=>(x-1)(x2-5x+6)=0

<=>(x-1)(x-2)(x-3)=0

<=>x=1 hoặc x=2 hoặc x=3

Vậy S={1;2;3}

©ⓢ丶κεη春╰‿╯
Xem chi tiết
©ⓢ丶κεη春╰‿╯
25 tháng 1 2018 lúc 13:02

6x^3 + x + 4 = 11x^2
<=>6x3-11x2+x+4=0
<=>6x3+3x2-14x2-7x+8x+4=0
<=>3x2(2x+1)-7x(2x+1)+4(2x+1)=0
<=>(2x+1)(3x2-7x+4)=0
<=>(2x+1)(3x2-3x-4x+4)=0
<=>(2x+1)(3x-4)(x-1)=0
<=>2x+1=0 hoặc 3x-4=0 hoặc x-1=0
<=>x\(\in\){-1/2;1;4/3}
b)x^6 - 14x^4 + 49x^2 = 36
<=>x6-14x4+49x2-36=0
<=>x6-x4-13x4+13x2+36x2-36=0
<=>x4(x2-1)-13x2(x2-1)+36(x2-1)=0
<=>(x2-1)(x4-13x2+36)=0
<=>(x+1)(x-1)(x4-9x2-4x2+36)=0
<=>(x+1)(x-1)[x2(x2-9)-4(x2-9)]=0
<=>(x-1)(x+1)(x2
-9)(x2-4)=0
<=>(x-1)(x+1)(x+3)(x-3)(x+2)(x-2)=0
<=>x\(\in\){-3;-2;-1;1;2;3}

p/s: kham khảo

Nhóc Mèo
Xem chi tiết
Trần Thị Diễm Quỳnh
9 tháng 9 2015 lúc 20:30

6x^3 + x + 4 = 11x^2

<=>6x3-11x2+x+4=0

<=>6x3+3x2-14x2-7x+8x+4=0

<=>3x2(2x+1)-7x(2x+1)+4(2x+1)=0

<=>(2x+1)(3x2-7x+4)=0

<=>(2x+1)(3x2-3x-4x+4)=0

<=>(2x+1)(3x-4)(x-1)=0

<=>2x+1=0 hoặc 3x-4=0 hoặc x-1=0

<=>x\(\in\){-1/2;1;4/3}

b)x^6 - 14x^4 + 49x^2 = 36

<=>x6-14x4+49x2-36=0

<=>x6-x4-13x4+13x2+36x2-36=0

<=>x4(x2-1)-13x2(x2-1)+36(x2-1)=0

<=>(x2-1)(x4-13x2+36)=0

<=>(x+1)(x-1)(x4-9x2-4x2+36)=0

<=>(x+1)(x-1)[x2(x2-9)-4(x2-9)]=0

<=>(x-1)(x+1)(x2-9)(x2-4)=0

<=>(x-1)(x+1)(x+3)(x-3)(x+2)(x-2)=0

<=>x\(\in\){-3;-2;-1;1;2;3}

phù.mệt

Phạm Quang Minh
Xem chi tiết
Nụ cười hạnh phúc
8 tháng 1 2017 lúc 16:11

ta có x3-6x2+11x-6=0

hay x3-x2-5x2-+5x+6x-6=0

=>x(x-1) - 5x(x-1)+6(x-1)=0

(x-1).(x-5x+6)=0 <=> (x-1)(x2-2x-3x+6)=0

(x-1)(x(x-2)-3(x-2)=0

(x-1)(x-2)(x-3)=0 <=> x-1=0 hoặc x-2=0 hoặc x-3=0

<=> x=1 hoặc x=2 hoặc x=3

vậy S ={1;2;3}