tính bằng cách thuận tiện nhất:
1/2+1/6+1/12+1/20+...............+1/110
tính bằng cách thuận tiện:
1/6 + 1/12 + 1/20 + 1/30 + ... + 1/90 + 1/110
misa
Đặt tên biểu thức là A ta có :
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+....+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}\)
\(=\left(\frac{1}{2}-\frac{1}{11}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+.....+\left(\frac{1}{10}-\frac{1}{10}\right)\)
\(=\left(\frac{1}{2}-\frac{1}{11}\right)+0+......+0\)
\(=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{10.11}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)
=\(\frac{1}{2}-\frac{1}{11}\)
=\(\frac{9}{22}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
1/6 + 1/12 + 1/20 +1/30 +...+ 1/90 + 1/110
tính bằng cách thuận tiện
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.......+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{9}{22}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{10\cdot11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}\cdot-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{9}{22}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)
= \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
= \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
= \(\frac{1}{2}-\frac{1}{11}+0+...+0\)
= \(\frac{9}{22}\)
tính bằng cách thuận tiện nhất
1/2+1/6+1/12+1/20+1/30+1/42+1/56
* Bạn tham khảo nhé *
1212 ++ 1616 ++ 112112 ++ 120120 ++ 130130 ++ 142142 ++ 156156
== 11×211×2 ++ 12×312×3 ++ 13×413×4 ++ 14×514×5 ++ 15×615×6 ++ 16×716×7 ++ 17×817×8
== 1111 −− 1212 ++ 1212 −− 1313 ++ 1313 −− 1414 ++ 1414 −− 1515 ++ 1515 −− 1616 ++ 1616 −− 1717 ++ 1717 −− 1818
== 1111 −− 1818
== 8888 −− 1818
== 78
tính bằng cách thuận tiện nhất. 1/6+ 1/12 + 1/20+1/30=
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
\(=\dfrac{1}{2}-\dfrac{1}{6}\)
\(=\dfrac{1}{3}\)
1. tính bằng cách thuận tiện nhất
1/2 - 1/6 - 1/12 - 1/20 - 1/30
\(\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}-\frac{1}{3\cdot4}-\frac{1}{4\cdot5}-\frac{1}{5\cdot6}\)
\(=\frac{1}{1}-\frac{1}{2}-\frac{1}{2}-\frac{1}{3}-\frac{1}{3}-\frac{1}{4}-\frac{1}{4}-\frac{1}{5}-\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{1}-\frac{1}{6}=\frac{5}{6}\)
NHỚ K MK NHA. CHÚC BẠN HỌC TỐT
1/2 - 1/6 - 1/12 - 1/20 - 1/30
=1/1x2 - 1/2x3- 1/3x4 - 1/4x5 - 1/5x6
=1-1/2 + 1/2-1/3 + 1/3-1/4 + 1/4-1/5 +1/5-1/6
=1-1/6
=5/6
Bài 1: so sánh phan số bằng cách thuận tiện nhất
13/71 và 15/72 21/42 và 23/45 47/45 và 48/46 13/25 và 3/7
Bài 2 : Tính D bằng cách thuận tiện nhất nha
D= 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + ... + 1/110
Bài 1 :
a) Hai phân số có chung tử số thì ta so sánh mẫu nếu mẫu lớn hơn thì phân số đó bé hơn
Áp dụng vào đó ta có : 71 < 72 => 15/71 > 15/72
b) Ta có : 21/42 = 1/2 = 23/46
Áp dụng câu a ta có : 46 > 45 => 21/42 < 23/45
c) Ta có : 47/45 = 1 + 2/45 ; 48/46 = 1 + 2/46
Vì 2/45 > 2/46 => 47/45 > 48/46
d) Ta có : 1 - 13/25 = 12/25
1/3 = 12/36
Vì 12/25 > 12/36 => 13/25 > 3/7
Bài 2 :
D = 1/2 + 1/6 + 1/12 + 1/20 + ... + 1/110
D = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + .... + 1/10.11
D = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + .... + 1/10 - 1/11
D = 1 - 1/11
D = 10/11
Tính bằng cách thuận tiện nhất :1/12+1/20+1/30+...+1/72+1/90
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{72}+\dfrac{1}{90}\)
\(=\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{8\times9}+\dfrac{1}{9\times10}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{3}-\dfrac{1}{10}\)
`=7/30`
tính bằng cách thuận tiện:1/2+ 1/6+ 1/12+ 1/20 +1/30+ 1/42+ 1/56 +1/72+ 1/90
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
\((\frac{1}{2}+\frac{1}{4}+\frac{1}{6}) \)x \((\frac{36}{9}-\frac{12}{9}:\frac{1}{3}) \)
\(= (\frac{1}{2}+\frac{1}{4}+\frac{1}{6}) \) x \((\frac{36}{9}-\frac{36}{9})\)
\( = (\frac{1}{2}+\frac{1}{4}+\frac{1}{6}) \) x \(0\)
\(= 0\)