Tính:
3S=22003 biết rằng:
S=1-2-+22-23+...+22002
cho A=1+2+22+...22002
B=22003
so sánh A vs B
Ta có:
\(A=1+2+2^2+...+2^{2002}\)
\(2A=2+2^2+2^3+...+2^{2003}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2003}\right)-\left(1+2+2^2+....+2^{2002}\right)\)
\(A=2^{2003}-1\)
Mà: \(2^{2003}=2^{2003}\)
\(\Rightarrow2^{2003}-1< 2^{2003}\)
\(\Rightarrow A< B\)
Cho A = 4 + 22 + 23 + 24 + ... + 22002. Chứng minh rằng A là một luỹ thừa của 2.
A=4+22+23+....+220
2A=8+23+24+...+221
=> A+2A-A = (8+23+24+...+221) - (4+22+23+....+220)
=>A=221+8 - (22+4)=221
=>A là 1 lũy thừa của 2
Cho A = 4 + 22 + 23 + 24 + ... + 22002. Chứng minh rằng A là một luỹ thừa của 2
A= 4+22+23+....+220
2A= 8+23+24+...+221
A + 2A -A = (8+2^3+2^4+...+2^21) - (4+2^2+2^3+....+2^20)
A= 2^21+8 - (2^2+4)=2^21
Vậy A là 1 lũy thừa của 2
Cho S = 1 - 2 + 22 -23 +...+22012 - 22013 . Tính 3S - 22014
\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)
\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)
Cho A=4+22+23+24+...+22002.Chứng minh rằng A là một luỹ thừa của 2
Giúp đi nhanh k cho
Cho A=4+22+23+24+...+22002. Chứng minh rằng A là một luỹ thừa của 2
giúp với nhanh kich cho
vậy nên mình mới hỏi chứ bỏ 23 đi thì mình tự giải cũng đc
4. a) Tính tổng: S = 12 + 22 + 32 + …+ 20042
b) Chứng minh: P = 12002 + 22002+…+20042002 không là số chính phương.
4. a) Tính tổng: S = 12 + 22 + 32 + …+ 20042
b) Chứng minh: P = 12002 + 22002+…+20042 không là số chính phương.
a) có tất cả số hạng là:
(20042-12):10+1=2004
tổng là:
\(\dfrac{\text{(20042+12).2004}}{2}\)\(=20094108\)
Tính tổng:S=1+2+2^2+2^3+2^4+...+2^100.Chứng minh rằng S chia hết cho 3 và tìm x biết rằng:S+1=2x
S=(1+2)+(2^2+2^3)+(2^4+2^5)+....+(2^99+2^100)
S=3+3.2^2+3.2^4+.....+3.2^99
S=3.(2^2+2^4+.....+2^99)
Vì 3 chia hết 3=>3.(2^2+2^4+....+2^99)
=>S chia hết 3
2S=2+2^2+2^3+2^4+.....+2^101
2S-S=(2+2^2+2^3+2^4+....+2^101)-(1+2+2^2+2^3+2^4+....+2^100)
S=2^101-1
S+1=2^101-1+1=2^101
=>x=101
Cho S=1-2+2^2-2^3+2^4-2^5+...+2^{2013}-2^{2014}.S=1−2+22−23+24−25+...+22013−22014. Khi đó 1-3S=2^x.1−3S=2x.
Vậy x=...............................
ta có: \(S=1-2+2^2-2^3+2^4-2^5+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+2^5-2^6+...+2^{2014}-2^{2015}\)
=> 2S + S = -22015 + 1
=> 3S = -22015 + 1
=> 3S - 1 = -22015
=> 1 - 3S = 22015
( cn về S = 1 - 2 + 22 - 23 + 24-25+...+22013 - 22014 mk vx chưa hiểu quy luật của nó lắm, thật lòng xl bn nha! mk chỉ bk z thoy!)