Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thế Dũng
Xem chi tiết
bé nga
Xem chi tiết
bé nga
10 tháng 1 2018 lúc 18:35

mk cần gấp lắm các bạn ạk

Không Tên
10 tháng 1 2018 lúc 19:13

BÀI 1:

a)  \(ĐKXĐ:\)          \(x-3\)\(\ne\)\(0\)

                          \(\Leftrightarrow\)\(x\)\(\ne\)\(3\)

b)   \(A=\frac{x^3-3x^2+4x-1}{x-3}\)

\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)

\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)

\(=x^2+4+\frac{11}{x-3}\)

Để  \(A\)có giá trị nguyên thì  \(\frac{11}{x-3}\)có giá trị nguyên

hay  \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng sau

\(x-3\)    \(-11\)         \(-1\)             \(1\)           \(11\)

\(x\)             \(-8\)               \(2\)              \(4\)           \(14\)

Vậy....

bé nga
10 tháng 1 2018 lúc 19:16

cảm ơn bạn nha nhưng bạn có chắc là nó đúng ko

Tuyết Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2021 lúc 14:44

a: \(B=\dfrac{x^2-1-2x+3x+1}{x\left(x-1\right)}=\dfrac{x^2+x}{x\left(x-1\right)}=\dfrac{x+1}{x-1}\)

๖ۣۜDũ๖ۣۜN๖ۣۜG
8 tháng 12 2021 lúc 14:49

a) B = \(\dfrac{x+1}{x}-\dfrac{2}{x-1}+\dfrac{3x+1}{x\left(x-1\right)}\) (ĐK: \(x\ne0;1\))

\(\dfrac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}-\dfrac{2x}{x\left(x-1\right)}+\dfrac{3x+1}{x\left(x-1\right)}\)

\(\dfrac{x^2-1-2x+3x+1}{x\left(x-1\right)}=\dfrac{x^2+x}{x\left(x-1\right)}=\dfrac{x+1}{x-1}\)

b) \(\left|x\right|=1< =>\left[{}\begin{matrix}x=1\left(L\right)\\x=-1\left(C\right)\end{matrix}\right.\)

Thay x = -1 vào B, ta có:

\(\dfrac{-1+1}{-1-1}=0\)

c) B nguyên <=> \(\dfrac{x+1}{x-1}\) nguyên <=> \(1+\dfrac{2}{x-1}\) nguyên

<=> 2\(⋮x-1\)

<=> x-1 \(\in\left\{-2;-1;1;2\right\}\)

x-1-2-112
x-1023
 CLCC

KL: x \(\in\left\{-1;2;3\right\}\)

 

Mạc Hoa Nhi
Xem chi tiết
Trang Nguyễn
19 tháng 5 2021 lúc 10:22

a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)

Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên

\(\Rightarrow11⋮4x-5\)

Vì \(x\in Z\) nên \(4x-5\in Z\)

\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)

Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).

b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)

Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)

       4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)

Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất

\(\Rightarrow4-x=1\Rightarrow x=3\)

\(\Rightarrow A=\dfrac{5}{4-3}=5\)

Vậy MaxA = 5 tại x = 3

c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).

Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)

Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất

\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất

Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\) 

       x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)

Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất

\(\Rightarrow x-3=-1\Rightarrow x=2\)

\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)

Vậy MaxB = -6 tại x = 2.

Nguyễn Lê Phước Thịnh
19 tháng 5 2021 lúc 10:53

a) Để M nhận giá trị nguyên thì \(8x+1⋮4x-1\)

\(\Leftrightarrow8x-2+3⋮4x-1\)

mà \(8x-2⋮4x-1\)

nên \(3⋮4x-1\)

\(\Leftrightarrow4x-1\inƯ\left(3\right)\)

\(\Leftrightarrow4x-1\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow4x\in\left\{2;0;4;-2\right\}\)

\(\Leftrightarrow x\in\left\{\dfrac{1}{2};0;1;-\dfrac{1}{2}\right\}\)

mà x là số nguyên

nên \(x\in\left\{0;1\right\}\)

Vậy: \(x\in\left\{0;1\right\}\)

[MINT HANOUE]
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 22:30

a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)

\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x}{x-2}\)

Đoàn Phương Linh
Xem chi tiết
Edogawa Conan
25 tháng 11 2019 lúc 22:09

a) A = \(\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1}{1-x}-1\right)\)

A = \(\frac{3x^2+3x-3}{x^2+2x-x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1-1+x}{1-x}\right)\)

A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\frac{x}{1-x}\)

A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}-\frac{x-2}{x-1}\)

A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{3x^2+3x-3-x^2+1-x^2+4}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{x^2+3x+2}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{x^2+2x+x+2}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{x+1}{x-1}\) (Đk: \(x-1\ge0\) => x \(\ge\)1)

b) Ta có: A = \(\frac{x+1}{x-1}=\frac{\left(x-1\right)+2}{x-1}=1+\frac{2}{x-1}\)

Để A \(\in\)Z <=> 2 \(⋮\)x - 1

<=> x - 1 \(\in\)Ư(2) = {1; -1; 2; -2}

<=> x \(\in\){2; 0; 3; -1}

c) Ta có: A < 0

=> \(\frac{x+1}{x-1}< 0\)

=> \(\hept{\begin{cases}x+1< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\)

=> \(\hept{\begin{cases}x< -1\\x>1\end{cases}}\)(loại) hoặc \(\hept{\begin{cases}x>-1\\x< 1\end{cases}}\) 

=> -1 < x < 1

Khách vãng lai đã xóa
Lê Tài Bảo Châu
25 tháng 11 2019 lúc 22:13

Edogawa Conan

Thiếu dòng đầu  \(ĐKXĐ:\hept{\begin{cases}x\ne1\\x\ne-2\\x\ne0\end{cases}}\)

Khách vãng lai đã xóa
Bảo Lê Gia
25 tháng 11 2019 lúc 22:33

ĐKXĐ : \(\) x # +1 ; x # - 1 ; x # -2 ; x # 0 ; x # 2

 Ta có: \(A=\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}.\left(\frac{1}{1-x}-1\right)\)

  \(=\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}.\frac{x}{1-x}\)

  \(=\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{1-x}\)

  \(=\frac{3x^2+3x-3}{x^2+x-2}-\left(\frac{x+1}{x+2}+\frac{x-2}{x-1}\right)\)

  \(=\frac{3x^2+3x-3}{x^2+x-2}-\frac{2x^2-5}{x^2+x-2}\)

  \(=\frac{x^2+3x+2}{x^2+x-2}=\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)

   \(\frac{x+1}{x-1}\)

b. Ta có:  \(A=\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)

Để A nhận giá trị nguyên thì: \(2⋮\left(x-1\right)\Rightarrow\left(x-1\right)\inƯ\left(2\right)\)

  +) x - 1 = 1 => x = 2   (loại)

  +) x - 1 = 2 => x = 3  

  +) x - 1 = -1 => x = 0  (loại)

  +) x - 1 = -2 => x = -1    (loại)

Vậy x = 3 là giá trị cần tìm.

c.  \(A< 0\Leftrightarrow\frac{x+1}{x-1}< 0\)

\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\)   hoặc \(\hept{\begin{cases}x+1< 0\\x-1>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 1\end{cases}}\)    hoặc   \(\hept{\begin{cases}x< -1\\x>1\end{cases}}\)(vô lý)

Vậy \(-1< x< 1\) và x # 0 là giá trị cần tìm

Khách vãng lai đã xóa
Nguyễn Thị Mát
Xem chi tiết
Kudo Shinichi
15 tháng 9 2019 lúc 18:21

Ta có : \(ĐKXĐ:x\ne-\frac{1}{2}\)

\(A=\left(x+1\right)+\frac{2}{2x+1}\) vì \(x\in Z\) nên A nguyên thì \(\frac{2}{2x+1}\) nguyên 

Hay \(2x+1\) là ước của 2 . Nên :
\(2x+1=2\Rightarrow x=\frac{1}{2}\) ( loại )

\(2x+1=1\Rightarrow x=0\) ( t/m)

\(2x+1=-1\Rightarrow x=-1\) ( t/m)

\(2x+1=-2\Rightarrow x=-\frac{3}{2}\) ( loại )

Với \(x=0;x=-1\) thì A nhận giá trị nguyên 

Chúc bạn học tốt !!!

Ái Kiều
Xem chi tiết
Ái Kiều
7 tháng 9 2019 lúc 8:26

PLEASE HELP ME !!!

2012 SANG
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 20:27

loading...