5x-x=-16
\(\left\{{}\begin{matrix}5x+\dfrac{16}{y}=360\\\dfrac{5x}{y}=\dfrac{\dfrac{16}{5}y}{x}\end{matrix}\right.\)
Lời giải;
Từ PT(2) suy ra $5x^2=\frac{16y^2}{5}$
$\Leftrightarrow x^2=(\frac{4}{5}y)^2$
$\Leftrightarrow x=\frac{4}{5}y$ hoặc $x=\frac{-4}{5}y$
Nếu $x=\frac{4}{5}y$ thì: thay vào PT(1):
$4y+\frac{16}{y}=360$
$\Leftrightarrow y+\frac{4}{y}=90$
$\Leftrightarrow y^2-90y+4=0$
$\Leftrightarrow (y-45)^2=2021$
$\Leftrightarrow y-45=\pm \sqrt{2021}$
$\Leftrightarrow y=45\pm \sqrt{2021}$
$\Rightarrow x=36\pm \frac{4}{5}\sqrt{2021}$ (tương ứng)
Trường hợp $x=\frac{-4}{5}y$ giải tương tự.
Giải các phương trình sau:
1) \(2^{x^2-5x+6} + 2^{1-x^2} = 2. 2^{6-5x} + 1\)
2) \(16^{\sin^2x} + 16^{\cos^2x} = 10\)
1.
PT $\Leftrightarrow 2^{x^2-5x+6}+2^{1-x^2}-2^{7-5x}-1=0$
$\Leftrightarrow (2^{x^2-5x+6}-2^{7-5x})-(1-2^{1-x^2})=0$
$\Leftrightarrow 2^{7-5x}(2^{x^2-1}-1)-(2^{x^2-1}-1)2^{1-x^2}=0$
$\Leftrightarrow (2^{x^2-1}-1)(2^{7-5x}-2^{1-x^2})=0$
$\Rightarrow 2^{x^2-1}-1=0$ hoặc $2^{7-5x}-2^{1-x^2}=0$
Nếu $2^{x^2-1}=1\Leftrightarrow x^2-1=0$
$\Leftrightarrow x^2=1\Leftrightarrow x=\pm 1$
$2^{7-5x}-2^{1-x^2}=0$
$\Leftrightarrow 7-5x=1-x^2\Leftrightarrow x^2-5x+6=0$
$\Leftrightarrow (x-2)(x-3)=0\Leftrightarrow x=2; x=3$
2. Đặt $\sin ^2x=a$ thì $\cos ^2x=1-a$. PT trở thành:
$16^a+16^{1-a}=10$
$\Leftrightarrow 16^a+\frac{16}{16^a}=10$
$\Leftrightarrow (16^a)^2-10.16^a+16=0$
Đặt $16^a=x$ thì:
$x^2-10x+16=0$
$\Leftrightarrow (x-2)(x-8)=0$
$\Leftrightarrow x=2$ hoặc $x=8$
$\Leftrightarrow 16^a=2$ hoặc $16^a=8$
$\Leftrightarrow 2^{4a}=2$ hoặc $2^{4a}=2^3$
$\Leftrightarroww 4a=1$ hoặc $4a=3$
$\Leftrightarrow a=\frac{1}{4}$ hoặc $a=\frac{3}{4}$
Nếu $a=\frac{1}{4}\Leftrightarrow \sin ^2x=\frac{1}{4}$
$\Leftrightarrow \sin x=\pm \frac{1}{2}$
Nếu $a=\sin ^2x=\frac{3}{4}\Rightarrow \sin x=\pm \frac{\sqrt{3}}{2}$
Đến đây thì đơn giản rồi.
rút gọn biểu thức
a. (5x+1)^2+2(5x-1)(5x+1)+(5x+1)^2
b.(x^2+8)(x+4)-(x+4)(x^2-4x+16)
Tính B = x19-5x18+5x17-5x16+......- 5x2+5x +1886 với x=4
Thay \(5=x+1\) vào biểu thức B ,có :
\(x^{19}-\left(x+1\right)x^{18}+\left(x+1\right)x^{17}-\left(x+1\right)x^{16}+...-\left(x+1\right)x^2+\left(x+1\right)x+1886\)
\(=x^{19}-x^{19}-x^{18}+x^{18}+x^{17}-x^{17}+x^{16}+...-x^3-x^2+x^2+x+1886\)
\(=x+1886\)
\(=4+1886\)
\(=1890\)
Vậy tại x = 4 giá trị của biểu thức B là 1890
\(\text{Ta có : }x=4\Rightarrow\left\{{}\begin{matrix}x+1\\-x+1890\end{matrix}\right.\\ \Rightarrow B=x^{19}-5x^{18}+5x^{17}-...-5x^2+5x+1886\\ =x^{19}-\left(x+1\right)x^{18}+\left(x+1\right)x^{17}-...-\left(x+1\right)x^2+\left(x+1\right)x-x+1890\\ =x^{19}-x^{19}-x^{18}+x^{18}+x^{17}-...-x^3-x^2+x^2+x-x+1890\\ \\=1890\)
5x+x+x=16-x
5x+x+x=16-x
=> 7x=16-x
=> 8x=16
=> x=2
\(5x+x+x=16-x\)
\(7x=16-x\)
\(7x+x=16\)
\(8x=16\)
\(x=\frac{16}{8}\)
\(x=2\)
5x + x+ x = 16 - x
5x + x + x + x = 16
5x + x * 1 + x *1 + x*1 = 16
x * ( 5 + 1 + 1 + 1 ) = 16
x * 8 =16
x = 16 : 8
x = 2
giải hộ mk vs
1/2x^4+3x^3-x^2+3x+2=0
2/x^4-5x^3+7x^2-5x-16=0
3/(x+2)^4+(x+4)^4=16
1) \(2x^4+3x^3-x^2+3x+2=0\)
\(\Rightarrow2x^4+x^3+2x^3+x^2-2x^2-x+4x+2=0\)
\(\Rightarrow x^3\left(2x+1\right)+x^2\left(2x+1\right)-x\left(2x+1\right)+2\left(2x+1\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+x^2-x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+2x^2-x^2-2x+x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)\right]=0\)
\(\Rightarrow\left(2x+1\right)\left(x+2\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\\x^2-x+1=0\end{matrix}\right.\)
Ta có:
\(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi x
\(\Rightarrow x^2-x+1\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\end{matrix}\right.\)
3) \(\left(x+2\right)^4+\left(x+4\right)^4=16\)
Đặt x + 3 = a, ta được
\(\left(a-1\right)^4+\left(a+1\right)^4=16\)
\(\Rightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=16\)
\(\Rightarrow\left(a^2-2a+1\right)^2+\left(a^2+2a+1\right)^2=16\)
\(\Rightarrow a^4+4a^2+1+2a^2-4a^3-4a+a^4+4a^2+1+2a^2+4a^3+4a=16\)
\(\Rightarrow2a^4+2.4a^2+2+2.2a^2=16\)
\(\Rightarrow2a^4+8a^2+4a^2+2=16\)
\(\Rightarrow2a^4+12a^2+2-16=0\)
\(\Rightarrow2a^4+12a^2-14=0\)
\(\Rightarrow2a^4-2a^2+14a^2-14=0\)
\(\Rightarrow2a^2\left(a^2-1\right)+14\left(a^2-1\right)=0\)
\(\Rightarrow\left(a^2-1\right)\left(2a^2+14\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right).2\left(a^2+7\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\\a^2+7=0\end{matrix}\right.\)
Vì \(a^2\ge0\) với mọi a
\(\Rightarrow a^2+7\ge7\) với mọi a
\(\Rightarrow a^2+7\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+3-1=0\\x+3+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
x^2-16=5x+20
TÌM X
\(\Rightarrow x^2-5x-36=0\Rightarrow x\left(x-9\right)+4\left(x-9\right)=0\Rightarrow\left(x-9\right)\left(x+4\right)=0\Rightarrow\left[{}\begin{matrix}x=9\\x=-4\end{matrix}\right.\)
x/4x-16 ; 1+x/20-5x
\(\dfrac{x}{4x-16}=\dfrac{x}{4\left(x-4\right)}=\dfrac{-5x}{20\left(4-x\right)}\)
\(\dfrac{1+x}{20-5x}=\dfrac{1+x}{5\left(4-x\right)}=\dfrac{4+4x}{20\left(4-x\right)}\)
\(\dfrac{x}{4x-16}=\dfrac{x}{4\left(x-4\right)}=\dfrac{5x}{20\left(x-4\right)}\\ \dfrac{1+x}{20-5x}=\dfrac{-\left(x+1\right)}{5\left(x-4\right)}=\dfrac{-4\left(x+1\right)}{20\left(x-4\right)}\)
Tìm x
\(\left(\dfrac{4}{3}\right)^{5x}.\left(\dfrac{3}{16}\right)^{5x}=0\)
\(\left(\dfrac{4}{3}\right)^{5x}.\left(\dfrac{3}{16}\right)^{5x}=0\)
\(\left(\dfrac{4}{3}.\dfrac{3}{16}\right)^{5x}=0\)
\(\left(\dfrac{1}{4}\right)^{5x}=0\)
⇔\(\dfrac{1}{4}=0\) (vô lí)
⇒không tồn tại x