Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ASDFA
Xem chi tiết
Thanh Tùng DZ
16 tháng 11 2017 lúc 18:15

Ta có :

\(B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\)

\(B=\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{1}{2016}+1\right)+1\)

\(B=\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2016}+\frac{2017}{2017}\)

\(B=2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)

\(\Rightarrow\frac{B}{A}=\frac{2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}=2017\)

Vậy \(\frac{B}{A}\)là số nguyên

kiwi nguyễn
Xem chi tiết
Trần Minh Hoàng
26 tháng 6 2019 lúc 9:29

Gọi MSC của các phân số hạng của A là 1 . 3 . 5 ... 99 . 26

Khi đó ta có: \(A=\frac{k_1+k_2+k_3+...+k_{100}}{1.3.5...99.2^6}\) (k1, k2, k3,..., k100 lần lượt là thừa số phụ của \(\frac{1}{1};\frac{1}{2};\frac{1}{3};...;\frac{1}{100}\)).

Ta thấy rằng k1, k2, k3,..., k100 đều là chẵn (Vì chứa ít nhất một thừa số 2) trừ k64 (Nó là thừa số phụ của \(\frac{1}{64}\) nên chính bằng 1 . 3 . 5 ... 99 là lẻ).

Suy ra k1 + k2 + k3 + ... + k100 là một số lẻ. Mà 1 . 3 . 5 ... 99 . 26 là chẵn nên A không là số tự nhiên.

❤  Hoa ❤
Xem chi tiết
Arima Kousei
29 tháng 4 2018 lúc 12:13

Dễ CM : 

\(1< A< 2\)

❤  Hoa ❤
29 tháng 4 2018 lúc 12:16

mệt !

mik đăng lên bởi mik ko biết làm 

bn nói vậy mình ko hỉu 

làm giúp mik ik

mik đag cần bài này để ôn thi !

I don
29 tháng 4 2018 lúc 16:38

ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{2018^2}< \frac{1}{2017.2018}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

                                                                         \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

                                                                           \(=1-\frac{1}{2018}=\frac{2017}{2018}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}< \frac{2017}{2018}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\) không phải số tự nhiên

\(\Rightarrow1+\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\right)\) là hỗn số

\(\Rightarrow A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\) không phải số tự nhiên ( đ p c m)

Ngân Nguyễn
Xem chi tiết
Phùng Minh Quân
6 tháng 10 2018 lúc 6:59

\(VP=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)

\(VP=\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)

\(VP=\frac{2}{2}-\frac{1}{2}+\frac{3}{3}-\frac{1}{3}+\frac{4}{4}-\frac{1}{4}+...+\frac{100}{100}-\frac{1}{100}\)

\(VP=1-\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+...+1-\frac{1}{100}\)

\(VP=100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=VT\) ( đpcm ) 

Mk nghĩ \(VT=100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\) bn xem lại đề có nhầm ko 

Chúc bạn học tốt ~ 

Ngân Nguyễn
6 tháng 10 2018 lúc 19:11

ko mk thấy đúng mà

ko nhầm đề đâu

Minh Triều
Xem chi tiết
Đỗ Lê Tú Linh
29 tháng 12 2015 lúc 14:07

\(A=1-2+\frac{1}{3}+4-5+\frac{1}{6}+...+2014-2015+\frac{1}{2016}\)

\(=\left(-1\right)+\frac{1}{3}+\left(-1\right)+\frac{1}{6}+...+\left(-1\right)+\frac{1}{2016}\)

\(=\left[\left(-1\right)+\left(-1\right)+...+\left(-1\right)\right]+\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(=\left(-1\right)\cdot685+2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4032}\right)=-685+2\cdot\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{63\cdot64}\right)\)

\(=-685+2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{63}-\frac{1}{64}\right)=-685+2\cdot\left(\frac{1}{2}-\frac{1}{64}\right)\)

\(=-685+2\cdot\left(\frac{32}{64}-\frac{1}{64}\right)=-685+2\cdot\frac{31}{64}=-685+\frac{31}{32}=-\frac{21889}{32}\)

cao nguyễn thu uyên
29 tháng 12 2015 lúc 13:54

bài này bn ko làm được à

để mk xem có làm được ko?

Big Boss
Xem chi tiết
Nguyễn Hữu Huy
1 tháng 4 2016 lúc 21:11

ta có \(\frac{1}{1^2}<\frac{1}{1.2},\frac{1}{2^2}<\frac{1}{2.3},.........,\frac{1}{100^2}<\frac{1}{100.101}\)

=> A <\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...\frac{1}{100.101}\)

dến đây bạn tự tính nha mình tính đc bằng 

A < \(\frac{1}{1}-\frac{1}{101}\)

bây giờ tự lập luận là đc , đơn giản mà 

kết bạn vs mình cũng đc , có bài nào thì mình bày  cho

LE HONG NHUNG
Xem chi tiết
Trần Thị Hà Giang
5 tháng 4 2018 lúc 16:53

Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}>0\)

=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}>1\)             (1)

Ta lại có \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

           < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

           < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

           < \(1-\frac{1}{100}< 1\)

      => \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)\(< 1+1\)

     => \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)\(< 2\)               (2)

Từ (1) và (2) => \(1< 1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 2\)

                  => \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)không là số tự nhiên

kiwi nguyễn
Xem chi tiết
Nguyễn Kim Hưng
26 tháng 6 2019 lúc 10:30

a)\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

=\(\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{100}{100!}-\frac{1}{100!}\)

=\(1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

=\(1-\frac{1}{100!}< 1\)

\(\Rightarrow\)\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}< 1\)

b)\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

=\(\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

=\(\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)=\(1+1-\frac{1}{99}-\frac{1}{100}\)

=\(2-\frac{1}{99}-\frac{1}{100}< 2\)

\(\Rightarrow\)\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)

Phạm Phương Anh
Xem chi tiết