Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Chi
Xem chi tiết
Akai Haruma
18 tháng 6 2021 lúc 8:32

Lời giải:

Đặt $x+y=a; xy=b$ thì pt $(1)$ trở thành:

$a^2-2b+\frac{8b}{a}=16$

$\Leftrightarrow (a^2-16)-2b(1-\frac{4}{a})=0$

$\Leftrightarrow (a-4)(a+4)-\frac{2b(a-4)}{a}=0$

$\Leftrightarrow (a-4)(a+4-\frac{2b}{a})=0$

TH1: $a=4\Leftrightarrow x+y=4$. Thay vô pt $(2)$:

$2x^2-5x+4-\sqrt{3x-2}=0$

$\Leftrightarrow (2x^2-5x+3)-(\sqrt{3x-2}-1)=0$

$\Leftrightarrow (2x-3)(x-1)-\frac{3(x-1)}{\sqrt{3x-2}+1}=0$

$\Leftrightarrow (x-1)(2x-3-\frac{3}{\sqrt{3x-2}+1})=0$

Nếu $x-1=0$ thì $x=1$ (tm) kéo theo $y=3$

Nếu $2x-3-\frac{3}{\sqrt{3x-2}+1}=0$

\(\Leftrightarrow 2(x-2)-(\frac{3}{\sqrt{3x-2}+1}-1)=0\)

\(\Leftrightarrow 2(x-2)-\frac{2-\sqrt{3x-2}}{\sqrt{3x-2}+1}=0\Leftrightarrow 2(x-2)+\frac{3(x-2)}{(\sqrt{3x-2}+1)(\sqrt{3x-2}+2)}=0\)

$\Rightarrow x=2$ kéo theo $y=2$

TH2: $a+4-\frac{2b}{a}=0$
$\Rightarrow a+4=\frac{2b}{a}$

$\Rightarrow 2a(a+4)=4b$

Theo BĐT AM-GM thì $a^2\geq 4b$ nên $2a(a+4)\leq a^2$

$\Rightarrow a^2+8a\leq 0$. Mà $a\geq 0$ (do đkxđ) nên $a=0; b=0$

Tức là $x=y=0$

$x=0$ thì không thỏa mãn đkxđ nên loại. Vậy......

 

ILoveMath
Xem chi tiết
Monkey D. Luffy
9 tháng 11 2021 lúc 9:38

\(PT\left(1\right)\Leftrightarrow\left(x^2+y^2\right)\left(x+y\right)+2xy=x+y\\ \Leftrightarrow\left[\left(x+y\right)^2-2xy\right]\left(x+y\right)+2xy-\left(x+y\right)=0\\ \Leftrightarrow\left(x+y\right)^3-2xy\left(x+y\right)+2xy-\left(x+y\right)=0\\ \Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-1\right]-2xy\left(x+y-1\right)=0\\ \Leftrightarrow\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)-2xy\left(x+y-1\right)=0\\ \Leftrightarrow\left(x+y-1\right)\left[\left(x+y\right)\left(x+y+1\right)-2xy\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x+y-1=0\\x^2+2xy+x+y^2+y+1=0\left(3\right)\end{matrix}\right.\\ \left(3\right)\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)+\dfrac{1}{4}+\dfrac{3}{4}=0\\ \Leftrightarrow\left(x+y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô.n_o\right)\)

Từ đó em thế vô PT(2) thôi

Monkey D. Luffy
9 tháng 11 2021 lúc 9:47

Thế \(x+y-1=0\Leftrightarrow y=x-1\) vào PT(2)

\(\Leftrightarrow\sqrt{x+x-1}=x^2-x+1\\ \Leftrightarrow\sqrt{2x-1}=x^2-x+1\left(x\ge\dfrac{1}{2}\right)\\ \Leftrightarrow\sqrt{2x-1}-1=x^2-x\\ \Leftrightarrow\dfrac{2x-2}{\sqrt{2x-1}+1}-x\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(\dfrac{2}{\sqrt{2x-1}+1}-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x\sqrt{2x-1}+x=2\left(4\right)\end{matrix}\right.\)

Giải (4) ta được \(x=1\Leftrightarrow y=0\)

Vậy ...

Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 1 2021 lúc 22:10

ĐKXĐ: ...

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+\dfrac{1}{x+y}+x-y+\dfrac{1}{x-y}=\dfrac{16}{3}\\\left(x+y\right)^2+\dfrac{1}{\left(x+y\right)^2}+\left(x-y\right)^2+\dfrac{1}{\left(x-y\right)^2}=\dfrac{100}{9}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+\dfrac{1}{x+y}+x-y+\dfrac{1}{x-y}=\dfrac{16}{3}\\\left(x+y+\dfrac{1}{x+y}\right)^2+\left(x-y+\dfrac{1}{x-y}\right)^2=\dfrac{136}{9}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x+y}=u\\x-y+\dfrac{1}{x-y}=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u+v=\dfrac{16}{3}\\u^2+v^2=\dfrac{136}{9}\end{matrix}\right.\)

Hệ cơ bản, chắc bạn tự giải quyết phần còn lại được

ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 12 2022 lúc 21:28

ĐKXĐ: \(x;y\ge0\)

Với \(x=0\) hoặc \(y=0\) đều ko là nghiệm

Với \(x;y>0\) hệ tương đương:

\(\left\{{}\begin{matrix}1+\dfrac{1}{x+y}=\dfrac{2}{\sqrt{3x}}\\1-\dfrac{1}{x+y}=\dfrac{4\sqrt{2}}{\sqrt{7y}}\end{matrix}\right.\)

Lần lượt cộng vế với vế và trừ vế cho vế ta được:

\(\left\{{}\begin{matrix}1=\dfrac{1}{\sqrt{3x}}+\dfrac{2\sqrt{2}}{\sqrt{7y}}\\\dfrac{1}{x+y}=\dfrac{1}{\sqrt{3x}}-\dfrac{2\sqrt{2}}{\sqrt{7y}}\end{matrix}\right.\)

Nhân vế với vế:

\(\dfrac{1}{x+y}=\dfrac{1}{3x}-\dfrac{8}{7y}\)

\(\Leftrightarrow\dfrac{y}{3}-\dfrac{8x}{7}=1\)

\(\Rightarrow y=\dfrac{24x+21}{7}\)

Rồi thế vào 1 trong các pt đầu 

Nhưng em có nhầm đề ko mà con số xấu kinh khủng vậy nhỉ? Số \(\sqrt{7}\) kia cho xấu 1 cách ko cần thiết, nó ko ảnh hưởng đến cách giải mà chỉ khiến cho việc tính toán khó khăn 1 cách cơ học khá vớ vẩn

Tâm Cao
Xem chi tiết
Nguyễn Thành Trương
20 tháng 2 2021 lúc 14:15

Điều kiện: \(\left\{ \begin{array}{l} x > - 2\\ y > 1\\ x + y > 0 \end{array} \right.\)

Hệ phương trình tương đương: \(\left\{ \begin{array}{l} \sqrt {\dfrac{{x + y}}{{x + 2}}} + \sqrt {\dfrac{{x + y}}{{y - 1}}} = 2\\ {\left( {\dfrac{{x + 2}}{{x + y}}} \right)^2} + \left( {\dfrac{{y - 1}}{{x + y}}} \right)^2 = 2 \end{array} \right.\). Đặt \(\left\{ \begin{array}{l} a = \sqrt {\dfrac{{x + y}}{{x + 2}}} \\ b = \sqrt {\dfrac{{x + y}}{{y - 1}}} \end{array} \right.\) (với \(a,b > 0\))

Ta có hệ phương trình: \(\left\{ \begin{array}{l} a + b = 2\\ \dfrac{1}{{{a^4}}} + \dfrac{1}{{{b^4}}} = 2 \end{array} \right.\left( * \right)\)

Áp dụng BĐT AM - GM, ta có:

\(\begin{array}{l} 2 = a + b \geqslant 2\sqrt {ab} \Rightarrow ab \leqslant 1\\ 2 = \dfrac{1}{{{a^4}}} + \dfrac{1}{{{b^4}}} \geqslant 2\sqrt {\dfrac{1}{{{a^4}}}.\dfrac{1}{{{b^4}}}} \Rightarrow ab \geqslant 1 \end{array}\)

Thế nên \(\left( * \right) \Leftrightarrow a = b = 1\)

Ta lại có hệ phương trình: \(\left\{ \begin{array}{l} \dfrac{{x + y}}{{x + 2}} = 1\\ \dfrac{{x + y}}{{y - 1}} = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = - 1\\ y = 2 \end{array} \right.\)

Vậy hệ phương trình có nghiệm là \((-1;2)\)

gãi hộ cái đít
20 tháng 2 2021 lúc 14:20

Đk: \(\left\{{}\begin{matrix}x>-2\\y>1\\x+y>0\end{matrix}\right.\)

hpt\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}+\sqrt{\dfrac{x+y}{y-1}}=2\\2\left(x+y\right)^2=\left(x+2\right)^2+\left(y-1\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}+\sqrt{\dfrac{x+y}{y-1}}=2\\\left(\dfrac{x+2}{x+y}\right)^2+\left(\dfrac{y-1}{x+y}\right)^2=2\end{matrix}\right.\)

Đặt \(a=\sqrt{\dfrac{x+y}{x+2}},b=\sqrt{\dfrac{x+y}{y-1}}\left(a,b>0\right)\)

Ta có hệ: \(\left\{{}\begin{matrix}a+b=2\\\dfrac{1}{a^4}+\dfrac{1}{b^4}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\a^4+b^4=2a^4b^4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\\left[\left(a+b\right)^2-2ab\right]^2-2a^2b^2=2a^4b^4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\\left(4-2ab\right)^2-2a^2b^2=2a^4b^4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\a^4b^4=a^2b^2-8ab+8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\a^2b^2\left(a^2b^2-1\right)+8\left(ab-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\\left(ab-1\right)\left[a^2b^2\left(ab+1\right)+8\right]=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\ab-1\end{matrix}\right.\left(a,b>0\right)\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}=1\\\sqrt{\dfrac{x+y}{y-1}}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=x+2\\x+y=y-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Hoàng Minh Ngọc
Xem chi tiết
Trần Huy tâm
8 tháng 2 2020 lúc 10:34

PT 1 tương đương

\(\left(x+y\right)^2-2xy+\frac{8xy}{x+y}=16\\ \Leftrightarrow a^2-2b+\frac{8b}{a}=16\) ( với a = x+y , b = xy )

\(\Leftrightarrow a^3-2ab+8b-16a=0\\ \Leftrightarrow a\left(a-4\right)\left(a+4\right)-2b\left(a-4\right)=0\\ \Leftrightarrow\left(a-4\right)\left(a^2+4a-2b\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}a=4\\a^2+4a=2b\end{matrix}\right.\)

với a = 4 suy ra

x+y = 4 thì pt (2) tương đương

\(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\\ \Leftrightarrow\sqrt{x^2+12}-4-3x+6-\sqrt{x^2+5}+3=0\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2+12}+4}-3\left(x-2\right)-\frac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2+5}+3}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2+12}+4}-3-\frac{x+2}{\sqrt{x^2+5}+3}\right)=0\)

suy ra x = 2

vế còn lại luôn dương ta dễ chứng minh được với x+y > 0

vậy x=2 là nghiệm

Khách vãng lai đã xóa
Nguyễn Trọng Chiến
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 12 2020 lúc 15:37

ĐKXĐ: ...

\(\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{16-y^2}=x^2+5x-6\\2\left(y-4\right)^2=-x^2-4x+5\end{matrix}\right.\)

\(\Rightarrow7\sqrt{16-y^2}+2\left(y-4\right)^2=x-1\)

Do \(7\sqrt{16-y^2}+2\left(y-4\right)^2\ge0\Rightarrow x-1\ge0\Rightarrow x\ge1\)

\(\Rightarrow\left(x+2\right)^2+2\left(y-4\right)^2\ge\left(x+2\right)^2\ge9\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)

Vậy hệ có cặp nghiệm duy nhất nói trên

Nguyễn Việt Lâm
20 tháng 12 2020 lúc 17:35

Đặt vế trái là P

\(P=\dfrac{x^4}{\dfrac{x^2}{y}+\dfrac{1}{y}}+\dfrac{y^4}{\dfrac{y^2}{z}+\dfrac{1}{z}}+\dfrac{z^4}{\dfrac{z^2}{x}+\dfrac{1}{x}}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}\)

\(P\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^3z+y^3x+z^3y+xy+yz+zx}\)

Ta có:

\(x^2y^2+y^2z^2+z^2x^2\ge\dfrac{1}{3}\left(xy+yz+zx\right)^2\ge\dfrac{1}{3}.3\sqrt[3]{xy.yz.zx}\left(xy+yz+zx\right)\)

\(\Rightarrow3\left(x^2y^2+y^2z^2+z^2x^2\right)\ge3\left(xy+yz+zx\right)\) (1)

\(x^4+x^2z^2\ge2\sqrt{x^6z^3}=2x^3z\)

\(y^4+x^2y^2\ge2y^3x\) ; \(z^4+y^2z^2\ge2z^3y\)

\(\Rightarrow x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2\ge2\left(x^3z+y^3x+z^3y\right)\) (2)

Lại có: \(x^4+x^4+x^4+z^4\ge4x^3z\) ; \(3y^4+x^4\ge4y^3x\) ; \(3z^4+y^4\ge4z^3y\)

\(\Rightarrow x^4+y^4+z^4\ge x^3z+y^3x+z^3y\) (3)

Cộng vế (1);  (2) và (3):

\(2\left(x^2+y^2+z^2\right)^2\ge3\left(x^3z+y^3x+z^3y+xy+yz+zx\right)\)

\(\Rightarrow P\ge\dfrac{3}{2}\)

Lê Hào 7A4
Xem chi tiết
Shinichi Kudo
16 tháng 6 2023 lúc 20:51

loading...  

Shinichi Kudo
16 tháng 6 2023 lúc 21:06

loading...  

THÁNH TOÁN
Xem chi tiết
Neet
16 tháng 5 2017 lúc 19:07

part full :v

*Th 1: \(x+y=2\)

\(Pt\left(1\right)\Leftrightarrow3y\sqrt{2-y^2}=x+\dfrac{4}{x+1}\)

xét \(VT=3y\sqrt{2-y^2}=3\sqrt{y^2\left(2-y^2\right)}\le3.\dfrac{y^2+2-y^2}{2}=3\)(theo AM-GM)

\(VT=x+\dfrac{4}{x+1}=\left(x+1\right)+\dfrac{4}{x+1}-1\ge2\sqrt{\dfrac{4\left(x+1\right)}{x+1}}-1=4-1=3\)(theo AM-GM)

do đó \(VT\le3;VF\ge3\)

\(VT=VF\Leftrightarrow\left\{{}\begin{matrix}y^2=2-y^2\\x+1=\dfrac{4}{x+1}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\pm1\\\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\end{matrix}\right.\)(tmđkxđ)(4 cặp)

*TH 2 \(\left(x+1\right)\sqrt{2-y^2}=1\Leftrightarrow x+1=\dfrac{1}{\sqrt{2-y^2}}\)(\(-\sqrt{2}< y< \sqrt{2}\))

thế vào Pt(1) , bình phương giải (nhác làm quá)

Neet
16 tháng 5 2017 lúc 0:14

\(Pt\left(2\right)\Leftrightarrow\left(x+y-2\right)\left[\left(x+1\right)\sqrt{2-y^2}-1\right]=0\)