Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
THÁNH TOÁN

ghpt

1) \(\left\{{}\begin{matrix}3\left(2-x\right)\sqrt{2-y^2}=2-y+\dfrac{4}{x+1}\\\left(x^2+xy-x+y-2\right)\sqrt{2-y^2}+2=x+y\end{matrix}\right.\)

Neet
16 tháng 5 2017 lúc 19:07

part full :v

*Th 1: \(x+y=2\)

\(Pt\left(1\right)\Leftrightarrow3y\sqrt{2-y^2}=x+\dfrac{4}{x+1}\)

xét \(VT=3y\sqrt{2-y^2}=3\sqrt{y^2\left(2-y^2\right)}\le3.\dfrac{y^2+2-y^2}{2}=3\)(theo AM-GM)

\(VT=x+\dfrac{4}{x+1}=\left(x+1\right)+\dfrac{4}{x+1}-1\ge2\sqrt{\dfrac{4\left(x+1\right)}{x+1}}-1=4-1=3\)(theo AM-GM)

do đó \(VT\le3;VF\ge3\)

\(VT=VF\Leftrightarrow\left\{{}\begin{matrix}y^2=2-y^2\\x+1=\dfrac{4}{x+1}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\pm1\\\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\end{matrix}\right.\)(tmđkxđ)(4 cặp)

*TH 2 \(\left(x+1\right)\sqrt{2-y^2}=1\Leftrightarrow x+1=\dfrac{1}{\sqrt{2-y^2}}\)(\(-\sqrt{2}< y< \sqrt{2}\))

thế vào Pt(1) , bình phương giải (nhác làm quá)

Neet
16 tháng 5 2017 lúc 0:14

\(Pt\left(2\right)\Leftrightarrow\left(x+y-2\right)\left[\left(x+1\right)\sqrt{2-y^2}-1\right]=0\)


Các câu hỏi tương tự
michelle holder
Xem chi tiết
michelle holder
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Tiểu Bảo Bảo
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
le quang minh
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Bánh Mì
Xem chi tiết