Tìm x:a,42-42(x+1)=0. b ,(2x+4)-(x+3)=0
tìm x:
a)\(\dfrac{-3}{x+5}< 0\) b)\(\dfrac{2x+1}{7}< 0\) c)x\(^2\) - 5x + 4 >0 d)\(\dfrac{x+1}{x-1}< 1\)
a) 1\(\dfrac{2}{3}\). b)\(\dfrac{1}{7}\). c) 1 d )0
a: =>x+5>0
hay x>-5
b: =>2x+1<0
hay x<-1/2
c: =>(x-1)(x-4)>0
=>x>4 hoặc x<1
a) x>-5 ĐKXĐ x\(\ne\)-5
b)x<\(-\dfrac{1}{2}\)
c)x>4 hoặc x<1
d)ĐKXĐ x\(\ne\)1, ko tìm đc x
Câu 3: (1 diểm) Tìm x:
a) (x + 3)^2 - x(x - 4) = 39
b) x(x - 9) + 2x -18 = 0
a)=> x2 + 6x + 9 - x2 + 4x = 39 => 10x = 30 => x = 3
b) => x(x - 9) + 2(x -9) = 0 => (x+2)(x-9) = 0
+)th1: x + 2 = 0 => x = -2
+)th2: x - 9 =0 => x = 9
|x+25|+|−y+5|=0
⇒|x+25|=0 và |−y+5|=0
+) |x+25|=0
⇒x+25=0
⇒x=−25
+) |−y+5|=0
⇒−y+5=0
⇒−y=−5
⇒y=5
Vậy cặp số (x;y) là (−25;5)
Những câu b-f thì chia ra làm 2 vế rồi tính
g thì tìm ước rồi lập bảng trường hợp trong ước
h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42
⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)
Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}
Ta có một số trường hợp sau :
2x−12x−1 | 1 | -1 | 2 | -2 | 3 | -3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(4y−2)=2(2y−1)(4y−2)=2(2y−1) | -1 | 1 | -2 | 2 | -|x+25|+|−y+5|=0 ⇒|x+25|=0 và |−y+5|=0 +) |x+25|=0 ⇒x+25=0 ⇒x=−25 +) |−y+5|=0 ⇒−y+5=0 ⇒−y=−5 ⇒y=5 Vậy cặp số (x;y) là (−25;5)
Những câu b-f thì chia ra làm 2 vế rồi tính g thì tìm ước rồi lập bảng trường hợp trong ước
h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42 ⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42) Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42} Ta có một số trường hợp sau :
|
Tìm x:
a) 27x3-27x2+9x-1=\(\dfrac{-1}{8}\)
b) x(4-x)+(2x-1)(x-4)=0
c) 3x(5x-2)-10x+4=0
a.
\(\Leftrightarrow\left(3x-1\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow3x-1=-\dfrac{1}{2}\)
\(\Leftrightarrow3x=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{1}{6}\)
b.
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)-x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x-1-x\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\\\end{matrix}\right.\)
c.
\(\Leftrightarrow3x\left(5x-2\right)-2\left(5x-2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{2}{5}\end{matrix}\right.\)
tìm x
a/ (x-5)^2-49=0
b/ (x+11)^2=121
c/ x.(x+7)-6x-42=0
d/ x^4-2x^3+10x^2-20x=0
a/ (x-5)^2-49=0
<=>(x-5)2-72
<=>(x-5-7)(x-5+7)=0
<=>(x-12)(x+2)=0
<=>x-12=0 hoặc x+2=0
<=>x=12 hoặc x=-2
vậy x=12 hoặc x=-2
b/ (x+11)^2=121
<=>(x+11)2-121=0
<=>(x+11)2-112=0
<=>(x+11-11)(x+11+11)=0
<=>x(x+22)=0
<=>x=0 hoặc x+22=0
<=>x=0 hoặc x=-22
vậy x=0 hoặc x=-22
c/ x.(x+7)-6x-42=0
<=>x2+7x-6x-42=0
<=>x2+x-42=0
<=>x2-6x+7x-42=0
<=>x(x-6)+7(x-6)=0
<=>(x-6)(x-7)=0
<=>x-6=0 hoặc x-7=0
<=>x=6 hoặc x=7
vậy x=6;7
d/ x^4-2x^3+10x^2-20x=0
<=>x3(x-2)+10x(x-2)=0
<=>(x-2)(x3+10x)=0
<=>(x-2)x(x2+10)=0
<=>x-2=0 hoặc x=0 hoặc x2+10=0
<=>x=2 hoặc x=0 hoặc x2=-10(vô lí)
vậy x=2;0
a)(x-5)2-49=0
<=>(x-5-7)(x-5+7)=0
<=>(x-12)(x+2)=0
<=>x-12=0 hoặc x+2=0
<=>x=12 hoặc x=-2
b)(x+11)2=121
<=>(x+11)2-121=0
<=>(x+11-11)(x+11+11)=0
<=>x(x+22)=0
<=>x=0 hoặc x+22=0
<=>x=0 hoặc x=-22
c)x(x+7)-6x-42=0
<=>x(x+7)-(6x+42)=0
<=>x(x+7)-6(x+7)=0
<=>(x+7)(x-6)=0
<=>x+7=0 hoặc x-6=0
<=>x=-7 hoặc x=6
d)x4-2x3+10x2-20x=0
<=>x(x3-2x2+10x-20)=0
<=>x[(x3-2x2)+(10x-20)]=0
<=>x[x2(x-2)+10(x-2)]=0
<=>x(x-2)(x2+10)=0
Do x2>0=>x2+10>0
=>x(x-2)=0
<=>x=0 hoặc x-2=0
<=>x=0 hoặc x=2
Tìm x:
a, X x 5 = 9,5 b, 42 x X = 15,12
a: 5x=9,5
nên x=1,9
b: 42x=15,12
nên x=15,12:42=0,36
a, \(x=\dfrac{9,5}{5}=\dfrac{19}{10}\)
b, \(x=\dfrac{15,12}{42}=\dfrac{9}{25}\)
a.\(x\times5=9,5\)
\(\Rightarrow x=9,5:5=1,9\)
b.\(42\times x=15,12\)
\(\Rightarrow x=15,12:42=0,36\)
Tìm x:
a)5x(x-2)-2x+4=0
b)2x(x+1)-(x-2)^2=6
c)2x^2+7x-9=0
\(a,\Leftrightarrow\left(x-2\right)\left(5x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{2}{5}\end{matrix}\right.\\ b,\Leftrightarrow2x^2+2x-x^2+4x-4-6=0\\ \Leftrightarrow x^2+6x-10=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{19}\\x=-3-\sqrt{19}\end{matrix}\right.\\ c,\Leftrightarrow2x^2-2x+9x-9=0\\ \Leftrightarrow\left(2x+9\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{2}\\x=1\end{matrix}\right.\)
Tìm x:
a)(x+2)^2-2(x+2)(x-5)=0
b)2x^2+3x-5=0
c)x+2√2x^2+2x^3=0
d)(3x-1)^2-4(x+5)^2=0
a: \(\Leftrightarrow\left(x+2\right)\left(12-x\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
b: \(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)
Tìm x:
a) x(2-x)+(x2+x)=7
b) (4-x)2-(2x+1)2=0
c) (4x4-16x-48) : (-2x)2=0
a: Ta có: \(x\left(2-x\right)+x^2+x=7\)
\(\Leftrightarrow2x-x^2+x^2+x=7\)
\(\Leftrightarrow3x=7\)
hay \(x=\dfrac{7}{3}\)
b: Ta có: \(\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(x-4-2x-1\right)\left(x-4+2x+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)