Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Henry.
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2021 lúc 11:30

1.

Phương trình có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m\ne0\\\Delta'\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left(m-2\right)^2-m\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\-m+4\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\le4\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m}\\x_1x_2=\dfrac{m-3}{m}\end{matrix}\right.\)

\(x_1+x_2+x_1x_2\ge2\)

\(\Leftrightarrow\dfrac{2\left(m-2\right)}{m}+\dfrac{m-3}{m}-2\ge0\)

\(\Leftrightarrow\dfrac{m-7}{m}\ge0\)

\(\Rightarrow\left[{}\begin{matrix}m\ge7\\m< 0\end{matrix}\right.\)

\(\Rightarrow m< 0\)

Nguyễn Việt Lâm
23 tháng 4 2021 lúc 11:33

2.

\(T=\dfrac{\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)}{sinx+cosx}+sinx.cosx\)

\(=1-sinx.cosx+sinx.cosx=1\)

3.

\(\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}=3\Leftrightarrow\dfrac{sin^2x+cos^2x}{sinx.cosx}=3\)

\(\Leftrightarrow\dfrac{1}{sinx.cosx}=3\Leftrightarrow sinx.cosx=\dfrac{1}{3}\Leftrightarrow2sinx.cosx=\dfrac{2}{3}\)

\(\Leftrightarrow sin2x=\dfrac{2}{3}\)

\(0< x< \dfrac{\pi}{4}\Rightarrow0< 2x< \dfrac{\pi}{2}\Rightarrow cos2x>0\)

\(\Rightarrow cos2x=\sqrt{1-sin^22x}=\dfrac{\sqrt{5}}{3}\)

Henry.
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2021 lúc 16:25

1.

Với \(m=2\Rightarrow\) pt có nghiệm \(x=-2\) (thỏa mãn)

Với \(m\ne2\) pt đã cho có nghiệm khi:

\(\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\ge0\)

\(\Leftrightarrow-m^2+4m-3\ge0\Rightarrow1\le m\le3\)

Vậy \(1\le m\le3\)

b.

Để pt có 2 nghiệm pb \(\Leftrightarrow\left\{{}\begin{matrix}1< m< 3\\m\ne2\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-4m+6}{m-2}\\x_1x_2=\dfrac{5m-6}{m-2}\end{matrix}\right.\)

\(x_1+x_2+x_1x_2>2013\)

\(\Leftrightarrow\dfrac{-4m+6}{m-2}+\dfrac{5m-6}{m-2}>2013\)

\(\Leftrightarrow\dfrac{m}{m-2}>2013\)

\(\Leftrightarrow\dfrac{-2012m+4026}{m-2}>0\)

\(\Leftrightarrow2< m< \dfrac{2013}{1006}\)

Nguyễn Việt Lâm
19 tháng 4 2021 lúc 16:30

2.

\(\overrightarrow{AB}=\left(7;7\right)=7\left(1;1\right)\)

Gọi M là trung điểm AB \(\Rightarrow M\left(\dfrac{3}{2};\dfrac{1}{2}\right)\)

Phương trình trung trực của AB có dạng:

\(1\left(x-\dfrac{3}{2}\right)+1\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow x+y-2=0\)

I là tâm đường tròn \(\Rightarrow\) I thuộc trung trực của AB

\(\Rightarrow\) Tọa độ của I là nghiệm: \(\left\{{}\begin{matrix}x+y-2=0\\-x+y-2=0\end{matrix}\right.\) \(\Rightarrow I\left(0;2\right)\)

\(\Rightarrow\overrightarrow{IA}=\left(-2;-5\right)\Rightarrow R^2=IA^2=29\)

Phương trình đường tròn:

\(x^2+\left(y-2\right)^2=29\)

Nguyễn Việt Lâm
19 tháng 4 2021 lúc 16:35

3.

\(\overrightarrow{BC}=\left(1;8\right)\)

Đường cao kẻ từ A vuông góc BC nên nhận (1;8) là 1 vtpt

Phương trình:

\(1\left(x-1\right)+8\left(y-2\right)=0\Leftrightarrow x+8y-17=0\)

b.

\(\overrightarrow{AC}=\left(2;3\right)\Rightarrow\) phương trình AC có dạng:

\(3\left(x-1\right)-2\left(y-2\right)=0\Leftrightarrow3x-2y+1=0\)

\(R=d\left(B;AC\right)=\dfrac{\left|3.2-2.\left(-3\right)+1\right|}{\sqrt{3^2+\left(-2\right)^2}}=\sqrt{13}\)

Phương trình: \(\left(x-2\right)^2+\left(y+3\right)^2=13\)

c. \(\overrightarrow{AB}=\left(1;-5\right)\)

\(\Rightarrow cos\left(AB;AC\right)=\dfrac{\left|1.2-5.3\right|}{\sqrt{2^2+3^2}.\sqrt{1^2+\left(-5\right)^2}}=\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow\left(AB;AC\right)=45^0\)

Henry.
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2021 lúc 18:33

2.

\(d\left(I;d\right)=\dfrac{\left|1-1+2\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\)

Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\)

\(\Rightarrow IH=d\left(I;d\right)\)

Áp dụng định lý Pitago:

\(IA^2=IH^2+AH^2\Leftrightarrow R^2=IH^2+\left(\dfrac{AB}{2}\right)^2\)

\(\Rightarrow R^2=3\)

Phương trình (C):

\(\left(x-1\right)^2+\left(y+1\right)^2=3\)

Nguyễn Việt Lâm
28 tháng 4 2021 lúc 18:56

3.

Đường tròn (C) tâm \(I\left(1;1\right)\) bán kính \(R=4\)

Gọi H là trung điểm MN \(\Rightarrow IH\perp MN\)

\(S_{IMN}=\dfrac{1}{2}IN.IM.sin\widehat{MIN}=\dfrac{1}{2}R^2.sin\widehat{MIN}\)

\(\Rightarrow S_{max}\) khi \(sin\widehat{MIN}\) đạt max

Ta có: \(\overrightarrow{IA}=\left(1;-1\right)\Rightarrow IA=\sqrt{2}\)

\(\Rightarrow MN\ge2\sqrt{R^2-IA^2}=2\sqrt{14}\)

\(\Rightarrow cos\widehat{MIN}=\dfrac{IM^2+IN^2-MN^2}{2IM.IN}=\dfrac{2R^2-MN^2}{2R^2}\le\dfrac{2.4^2-4.14}{2.4^2}=-\dfrac{3}{4}< 0\)

\(\Rightarrow180^0\le\widehat{MIN}< 90^0\)

\(\Rightarrow sin\widehat{MIN}\) nghịch biến \(\Rightarrow sin\widehat{MIN}\) đạt GTLN khi \(\widehat{MIN}\) đạt GTNN

\(\Rightarrow\widehat{MIH}=\dfrac{1}{2}\widehat{MIN}\) đạt GTNN

Do \(180^0\le\widehat{MIN}< 90^0\Rightarrow90^0\le\widehat{MIH}< 45^0\)

\(\Rightarrow sin\widehat{MIH}\) đồng biến \(\Rightarrow\widehat{MIH}\) đạt GTNN khi \(sin\widehat{MIH}\) đạt GTNN

\(sin\widehat{MIH}=\dfrac{MH}{IM}=\dfrac{MN}{2R}\ge\dfrac{\sqrt{14}}{4}\)

Dấu "=" xảy ra khi và chỉ khi H trùng A

\(\Rightarrow d\perp IA\Rightarrow d\) nhận (1;-1) là 1 vtpt

Phương trình d:

\(1\left(x-2\right)-1\left(y-0\right)=0\Leftrightarrow x-y-2=0\)

Henry.
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 4 2021 lúc 7:18

3.

\(\pi< a< \dfrac{3\pi}{2}\Rightarrow cosa< 0\)

\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\dfrac{4}{5}\)

b. 

\(\dfrac{2+2cos2a-sin2a}{sin2a-sin^2a}=\dfrac{2+2\left(2cos^2a-1\right)-2sina.cosa}{2sina.cosa-sin^2a}\)

\(=\dfrac{4cos^2a-2sina.cosa}{sina\left(2cosa-sina\right)}=\dfrac{2cosa\left(2cosa-sina\right)}{sina\left(2cosa-sina\right)}=\dfrac{2cosa}{sina}=2cota\)

4.

\(\overrightarrow{BA}=\left(2;3\right)\Rightarrow\) đường thẳng d nhận (3;-2) là 1 vtpt

Phương trình d:

\(3\left(x-4\right)-2\left(y+1\right)=0\Leftrightarrow3x-2y-14=0\)

Nguyễn Việt Lâm
17 tháng 4 2021 lúc 7:25

5.

Đường thẳng BC vuông góc đường cao kẻ từ A nên nhận (1;-1) là 1 vtpt

Phương trình BC:

\(1\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow x-y+3=0\)

C là giao điểm BC và trung tuyến kẻ từ C nên là nghiệm:

\(\left\{{}\begin{matrix}x-y+3=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow C\left(2;5\right)\)

Do M là trung điểm BC

\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_M-x_C=-4\\y_B=2y_M-y_C=-1\end{matrix}\right.\) \(\Rightarrow B\left(-4;-1\right)\)

Do A thuộc đường cao kẻ từ A nên tọa độ có dạng: \(A\left(a;4-a\right)\)

Gọi N là trung điểm AB \(\Rightarrow N\left(\dfrac{a-4}{2};\dfrac{3-a}{2}\right)\)

N thuộc trung tuyến kẻ từ C nên tọa độ thỏa mãn:

\(2\left(\dfrac{a-4}{2}\right)-\left(\dfrac{3-a}{2}\right)+1=0\Rightarrow a=3\) \(\Rightarrow A\left(3;1\right)\)

Hoàng Anh Thư
Xem chi tiết
animepham
21 tháng 5 2022 lúc 18:31

1a2b4d5a 

11a 8a

12b

Henry.
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 5 2021 lúc 16:58

1.

a. \(\left|-x^2+x-4\right|>4\Leftrightarrow\left[{}\begin{matrix}-x^2+x-4>4\\-x^2+x-4< -4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+8< 0\left(vô-nghiệm\right)\\x^2-x>0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\)

b. \(A=\dfrac{\left(cos^2x+sin^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+3sin^4x-1}{\left(1-cos^2x\right)\left(1+cos^2x\right)-3sin^4x}\)

\(=\dfrac{3sin^4x-3sin^2x.cos^2x}{sin^2x\left(1+cos^2x\right)-3sin^4x}=\dfrac{3sin^2x\left(sin^2x-cos^2x\right)}{sin^2x\left(1+1-sin^2x-3sin^2x\right)}\)

\(=\dfrac{-3sin^2x.cos2x}{sin^2x\left(2-4sin^2x\right)}=\dfrac{-3cos2x}{2cos2x}=-\dfrac{3}{2}\)

 

Nguyễn Việt Lâm
5 tháng 5 2021 lúc 17:04

2.

a. \(\overrightarrow{AC}=\left(5;-3\right)\)

Đường cao BH vuông góc AC nên nhận (5;-3) là 1 vtpt

Phương trình BH:

\(5\left(x-1\right)-3\left(y+1\right)=0\Leftrightarrow5x-3y-8=0\)

b.

\(\overrightarrow{BC}=\left(1;3\right)\)

Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{3}{2};\dfrac{1}{2}\right)\)

Phương trình trung trực BC (qua M và vuông góc BC) có dạng:

\(1\left(x-\dfrac{3}{2}\right)+3\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow x+3y-3=0\)

Tâm I của đường tròn đồng thời nằm trên trung trực BC và \(\Delta\) nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}3x-y+11=0\\x+3y-3=0\end{matrix}\right.\) \(\Rightarrow I\left(-3;2\right)\)

\(\Rightarrow\overrightarrow{IB}=\left(4;3\right)\Rightarrow R^2=IB^2=25\)

Phương trình (C): \(\left(x+3\right)^2+\left(y-2\right)^2=25\)

Henry.
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2021 lúc 12:12

1.a

\(\left|-x^2+x-4\right|>4\Leftrightarrow\left[{}\begin{matrix}-x^2+x-4>4\\-x^2+x-4< -4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+8< 0\left(vô-nghiệm\right)\\x^2-x>0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\)

b.

\(sin2A+sin2B+sin2C=2sin\left(A+B\right)cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC\left[cos\left(A-B\right)+cosC\right]=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)

\(=2sinC.\left(-2sinA.sin\left(-B\right)\right)=4sinA.sinB.sinC\)

Nguyễn Việt Lâm
28 tháng 4 2021 lúc 12:16

2.

\(\overrightarrow{AC}=\left(5;-3\right)\Rightarrow\) đường cao BH nhận (5;-3) là 1 vtpt

Phương trình BH:

\(5\left(x-1\right)-3\left(y+1\right)=0\Leftrightarrow5x-3y-8=0\)

b.

Gọi G là trọng tâm tam giác ABC \(\Rightarrow G\left(0;2\right)\)

\(\overrightarrow{BC}=\left(1;3\right)\Rightarrow\) phương trình BC có dạng:

\(3\left(x-1\right)-1\left(y+1\right)=0\Leftrightarrow3x-y-4=0\)

\(R=d\left(G;BC\right)=\dfrac{\left|3.0-1.2-4\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{6}{\sqrt{10}}\Rightarrow R^2=\dfrac{18}{5}\)

Phương trình: \(x^2+\left(y-2\right)^2=\dfrac{18}{5}\)

Henry.
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2021 lúc 11:32

1a.

\(\left|x^2-4x-1\right|\ge1\Leftrightarrow\left[{}\begin{matrix}x^2-4x-1\ge1\\x^2-4x-1\le-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-2\ge0\\x^2-4x\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge2+\sqrt{6}\\x\le2-\sqrt{6}\\0\le x\le4\end{matrix}\right.\)

1b.

\(A=3\left(sin^4x-cos^4x\right)\left(sin^4x+cos^4x\right)+4cos^6x-8sin^6x+6sin^4x\)

\(=3\left(sin^2x-cos^2x\right)\left(sin^4x+cos^4x\right)+4cos^6x-2sin^6x+6sin^4x\left(1-sin^2x\right)\)

\(=3sin^6x-3cos^6x+3sin^2x.cos^4x-3sin^4x.cos^2x+4cos^6x-2sin^6x+6sin^4x.cos^2x\)

\(=sin^6x+3sin^2x.cos^4x+3sin^4x.cos^2x+cos^6x\)

\(=\left(sin^2x+cos^2x\right)^3=1\)

Nguyễn Việt Lâm
28 tháng 4 2021 lúc 11:41

2.

a. \(\overrightarrow{CB}=\left(6;-2\right)=2\left(3;-1\right)\)

\(\overrightarrow{AB}=\left(9;-3\right)=3\left(3;-1\right)\)

\(\Rightarrow\overrightarrow{CB}=\dfrac{2}{3}\overrightarrow{AB}\Rightarrow\) ba điểm A;B;C thẳng hàng

\(\Rightarrow\) Đề bài sai, không có tam giác nào ở đây và do đó đương nhiên không thể dựng được đường cao của ABC

b. Gọi M là trung điểm AB \(\Rightarrow M\left(\dfrac{3}{2};\dfrac{1}{2}\right)\)

Phương trình trung trực AB có dạng:

\(3\left(x-\dfrac{3}{2}\right)-1\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow3x-y-4=0\)

Gọi I là tâm đường tròn \(\Rightarrow\) tọa độ I thỏa mãn:

\(3.6t-\left(1-2t\right)-4=0\Rightarrow t=\dfrac{1}{4}\Rightarrow I\left(\dfrac{3}{2};\dfrac{1}{2}\right)\)

\(\Rightarrow\overrightarrow{IA}=\left(-\dfrac{9}{2};\dfrac{3}{2}\right)\Rightarrow R^2=IA^2=\dfrac{45}{2}\)

Phương trình: \(\left(x-\dfrac{3}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2=\dfrac{45}{2}\)

Henry.
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2021 lúc 11:25

1.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x< 6\\x^2-5x>-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x-6< 0\\x^2-5x+6>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1< x< 6\\\left[{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-1< x< 2\\3< x< 6\end{matrix}\right.\)

2.

\(A=-3\left(cos^4x+sin^4x+2sin^2x.cos^2x-2sin^2xcos^2x\right)+2\left(sin^2x+cos^2x\right)^3-6sin^2x.cos^2x.\left(sin^2x+cos^2x\right)\)

\(=-3\left(sin^2x+cos^2x\right)^2+6sin^2x.cos^2x+2-6sin^2x.cos^2x\)

\(=-3+2=-1\)