1.
a. \(\left|-x^2+x-4\right|>4\Leftrightarrow\left[{}\begin{matrix}-x^2+x-4>4\\-x^2+x-4< -4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+8< 0\left(vô-nghiệm\right)\\x^2-x>0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\)
b. \(A=\dfrac{\left(cos^2x+sin^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+3sin^4x-1}{\left(1-cos^2x\right)\left(1+cos^2x\right)-3sin^4x}\)
\(=\dfrac{3sin^4x-3sin^2x.cos^2x}{sin^2x\left(1+cos^2x\right)-3sin^4x}=\dfrac{3sin^2x\left(sin^2x-cos^2x\right)}{sin^2x\left(1+1-sin^2x-3sin^2x\right)}\)
\(=\dfrac{-3sin^2x.cos2x}{sin^2x\left(2-4sin^2x\right)}=\dfrac{-3cos2x}{2cos2x}=-\dfrac{3}{2}\)
2.
a. \(\overrightarrow{AC}=\left(5;-3\right)\)
Đường cao BH vuông góc AC nên nhận (5;-3) là 1 vtpt
Phương trình BH:
\(5\left(x-1\right)-3\left(y+1\right)=0\Leftrightarrow5x-3y-8=0\)
b.
\(\overrightarrow{BC}=\left(1;3\right)\)
Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{3}{2};\dfrac{1}{2}\right)\)
Phương trình trung trực BC (qua M và vuông góc BC) có dạng:
\(1\left(x-\dfrac{3}{2}\right)+3\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow x+3y-3=0\)
Tâm I của đường tròn đồng thời nằm trên trung trực BC và \(\Delta\) nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}3x-y+11=0\\x+3y-3=0\end{matrix}\right.\) \(\Rightarrow I\left(-3;2\right)\)
\(\Rightarrow\overrightarrow{IB}=\left(4;3\right)\Rightarrow R^2=IB^2=25\)
Phương trình (C): \(\left(x+3\right)^2+\left(y-2\right)^2=25\)