Chứng minh x² - 4x +12>0 với mọi x
-Chứng minh -4x2+4x-12<0 với mọi x.
\(-4x^2+4x-12< 0
\)
\(\Leftrightarrow-\left(4x^2-4x+1\right)-11< 0\)
\(\Leftrightarrow-\left(2x-1\right)^2-11< 0\left(đpcm\right)\)
Ta có: \(-4x^2+4x-12=-\left(2x\right)^2+4x-1-11\)=\(\left[-\left(2x\right)^2+4x-1\right]-11\)
\(=-\left(2x-1\right)^2-11\)
Vì \(\left(2x-1^2\right)>0\)\(\forall x\)
\(-\left(2x-1\right)^2< 0\)\(\forall x\)
\(-\left(2x-1\right)^2-11< -11< 0\)\(\forall x\)
hay \(-4x^2+4x-12< 0\)\(\forall x\)
Chứng minh rằng:
a, x^2-4x>-5 với mọi số thực x
b, Chứng minh 2x^2+4y^2-4x-4xy+5>0 với mọi số thực x;y
a) Xét \(x^2-4x+4=\left(x-2\right)^2\ge0\)
<=> \(x^2-4x\ge-4>-5\)
b) \(2x^2+4y^2-4x-4xy+5\)
= \(\left(x^2-4x+4\right)+\left(x^2-4xy+4y^2\right)+1\)
= \(\left(x-2\right)^2+\left(x-2y\right)^2+1\ge1>0\)
Chứng minh rằng:
a)x^2+x+1>0 với mọi x
b)-4x^2-4x-2<0 với mọi x
Câu a :
\(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2\ge\dfrac{3}{4}\)
Vậy biểu thức trên luôn lớn hơn 0 với mọi x
Làm Full cho you nhé,bạn kia sai r:
\(linh_1=x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\left(đpcm\right)\)
\(linh_2=-4x^2-4x-2=-1\left(4x^2+4x+2\right)=-1\left(4x^2+4x+1+1\right)=-1\left(4x^2+4x+1\right)-1=-1\left(2x+1\right)^2-1< 0\left(đpcm\right)\)
Chứng minh:
1) A=x2+2x+2>0 với mọi x
2) B=x2+6x+11>0 với mọi x
3) C=4x2+4x-2<0 với mọi x
4) D=-x2-6x-11<0 với mọi x
5) E=-4x2+4x-2<0 với mọi x
1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)
3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0
4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)
5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)
1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)
=> Đpcm
2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)
=> Đpcm
3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)
\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)
\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)
=> Đpcm
4,5 làm tương tự
\(1.A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì\(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1\ge1\forall x\)
hay\(\left(x+1\right)^2+1>0\forall x\)
\(2.B=x^2+2x.3+9+2=\left(x+3\right)^2+2\)
CM tương tự A
\(3.C=4x^2+4x-2=\left(2x+1\right)^2-2\)
Vì\(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2-2\ge-2\forall x\)(có thể >0)
4,5 Cm tương tự
Chứng Minh Rằng :
a) x^2 + 2x + 2 > 0 (với mọi x)
b) x^2 + xy^2 + 2×(x + y) + 3 > 0 ( với mọi x )
c) 4x^2 + y^2 + 4xy + 4x + 2y + 2 > 0 ( với mọi x )
Ta có : x2 + 2x + 2
= x2 + 2x + 1 + 1
= (x + 1)2 + 1 \(\ge1\forall x\)
Vậy x2 + 2x + 2 \(>0\forall x\)
Ta có : x2 + 2x + 2
=> x2 + 2x + 1 + 1
=> ( x + 1)2 + 1 > 1\(\forall x\)
Vậy x2 + 2x + 2 > \(0\forall x\)
Chứng minh rằng
x^2 + 2x + 2 > 0 với mọi x
-x^2 + 4x - 4 < 0 với mọi x
x^2 + 2x + 2 = x^2 + 2.x.1 + 1^2 +1 = (x + 1)^2 + 1 > 0
-x^2 + 4x - 4 = -(x^2 - 2.x.2 + 2^2) = -(x - 2)^2 <= 0
a) ta co ; x^2+ 2x+ 2= (x2+2x+1)+1=(x+1)2+1>0
vi (x+1)2>hoặc=0;1>0suy ra x^2+ 2x+ 2>0
b)ta co -x2+4x-4=-(x2-4x+4)=-(x-2)2<0
a) x^2 + 2x + 2 = ( x^2 + 2x +1 ) + 1 =( x + 1)^2 +1 >0 với mọi x
b) -x^2 + 4x - 4 = -( x^2 -4x + 4 ) = - ( x - 2)^2 ≤ 0 với mọi x
Chứng minh rằng 4x - x bình phương - 5 < 0 với mọi x
\(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)
Chứng minh biểu thức sau luôn lớn hơn 0 với mọi x:
A=x2+6x-11
B=x2-4x+12
câu a hình như bạn ghi sai đề rồi
câu b:
Ta có: \(x^2-4x+12=x^2-4x+4+8\)
\(=\left(x-2\right)^2+8\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\in Q\)
\(\Rightarrow\text{}\left(x-2\right)^2+8\ge8>0\forall x\in Q\)
Do đó: \(x^2-4x+12>0\forall x\in Q\)(đpcm)
Chứng minh rằng:
a)3x^2-x+1>0 với mọi xϵR
b)2x-4x^2-2<0 với mọi xϵR