Cho (O) và (O') tiếp cúc ngoài ở A. Một cát tuyến kẻ qua A cắt (O) tại B; cắt (O') ở C. Kẻ đường kính BD và CE của (O) và (O')
Chứng minh: a) D,A,E thẳng hàng
b) BD song song CE
Cho hai đường tròn tâm O và O’ tiếp xúc ngoài tại A. Qua A kẻ một cát tuyến cắt (O) ở B và cắt (O') ở C. Kẻ các đường kính BOD và CO'E của hai đường tròn trên
a, Chứng minh BD song song CE
b, Chứng minh ba điểm D, A, E thẳng hàng
c, Nếu (O) bằng (O') thì tứ giác BDCE là hình gì? Tại sao?
Qua điểm A ở ngoài đường tròn (O), kẻ cát tuyến ABC với đtròn. Các tiếp tuyến tại B và C của đtròn cắt nhau tại K. Qua K kẻ đường thẳng vuông góc với OA cắt OA tại H và cắt (O) tại E,F. CE nằm giữa K và F, OK cắt BC tại M. CM: a) EMOF nội tiếp b) AE, AF là tiếp tuyến của (O)
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài với nhau tại A. Qua A kẻ một cát tuyến bất kỳ cắt (O) tại C và (O’) tại D. Chứng minh rằng OC // O’D
Ta có \(\widehat{OAC}=\widehat{O'AD}\left(đối.đỉnh\right)\)
Mặt khác \(\Delta OAC.cân.tại.O\left(OA=OC\right)\)
Nên \(\widehat{OAC}=\widehat{OCA}\)
Tương tự \(\Delta O'AD.cân.tại.O'\left(O'A=O'D\right)\)
Nên \(\widehat{O'AD}=\widehat{O'DA}\)
\(\Rightarrow\widehat{OCA}=\widehat{ADO'}\)
Mà 2 góc này ở vị trí so le trong
Vậy \(OC//O'D\)
Cho 2 đường tròn (O) và (O') cắt nhau tại A và B(O và O' nằm khác phía vs AB).Qua A kẻ cát tuyến cắt đường tròn (O) ở C.Cắt (O') ở D.Các tiếp tuyến của 2 đường tròn kẻ từ C và D,cắt nhau ở I.Chứng minh rằng khi cát tuyến CAD thay đổi thì:
a)Góc CBD ko đổi
b)Góc CID ko đổi
cho điểm A ở ngoài đường tròn (O;R). Kẻ tiếp tuyến AB (B là tiếp điểm ) và cát tuyến AMN ( M nằm giữ A và N ). Gọi I là trung điểm của MN . Qua B kẻ dây cung vuông góc vs OA tại H và cắt ( O) tại C
a, Cho R= 6cm , OA = 10cm. Tính độ dài AB
b, Chứng minh : 4 điểm A, B , I,O cùng thuộc 1 đường tròn . Xác định tâm bán kính của đường tròn đó .
a) Áp dụng định lí Pytago vào ΔABO vuông tại B, ta được:
\(OA^2=OB^2+AB^2\)
\(\Leftrightarrow AB^2=10^2-6^2=64\)
hay AB=8(cm)
b) Xét tứ giác OIBA có
\(\widehat{OIA}=\widehat{OBA}\left(=90^0\right)\)
Do đó: OIBA là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay O,I,B,A cùng thuộc 1 đường tròn
Tâm là trung điểm của OA
cho hai đường tròn tâm O và O' tiếp xúc ngoài tại A. Qua A kẻ một cát tuyến cắt (O) ở B và cắt (O') ở C. Kẻ các đường kính BOD và CO'E của 2 đường tròn trên
a) Chứng minh BD// CE
b)Chứng minh 3 điểm D,A,E thẳng hàng
c) Nếu (O) bằng (O' ) thì tứ giác BDCE là hình gì ? tại sao?
Từ một điểm I ở ngoài đường tròn (O), kẻ một cát tuyến cắt (O) tại A và B. Các tiếp tuyến với đường tròn (O) tại A và B cắt nhau ở M. Hạ MH vuông góc với OI, MH cắt AB tại N, OM cắt AB tại K
a) Chứng minh: K là trung điểm của AB
b) Chứng minh: 5 điểm A,O,B,M,H cùng thuộc một đường tròn
c) Chứng minh: IA.IB=IK.IN
d) MH cắt (O) tại C và D. Chứng tỏ IC, ID là các tiếp tuyến của (O)
Cho hai đường tròn (O) và (O') cắt nhau tại A và B sao cho O và O' nằm khác phía với AB. Qua A kẻ cát tuyến cắt (O) và (O') lần lượt tại M và N. Tiếp tuyến của (O) tại M cắt tiếp tuyến của (O') tại N ở C. Xác định vị trí của cát tuyến MAN để bán kính đường tròn ngoại tiếp tam giác MCN đạt giá trị lớn nhất
Từ điểm A ở ngoài đường tròn (O;R) kẻ 2 tiếp tuyến AB,AC đến (O)
a) qua A kẻ 1 cát tuyến bất kỳ cắt (O) tại E và F ( E,F không qua tâm O ,E nằm giữa A,F
b)cm:BE.CF=BF.CE