Mọi người giúp mình với: chứng minh với mọi n thuộc Z thì n.(5n+3) chia hết cho 2
Chứng minh rằng với mọi n thuộc Z thì f(n) = n^5 - 5n^3 + 4n chia hết 120
Chứng minh A= n(5n+3) chia hết cho n với mọi n thuộc Z
Vì \(n⋮n\) với mọi n nguyên nên \(n\left(5n+3\right)⋮n\)
Hay A chia hết cho n với mọi n thuộc Z.
Vì n \(\in\) Z => 5n+3 \(\in\) Z. Mà n \(⋮\) n
=> n( 5n+3 ) \(⋮\) n với mọi n \(\in\) Z
Vậy A \(⋮\) n với mọi n \(\in\) Z
Chứng minh với mọi n thuộc Z thì n.(5n+3) chia hết cho 2
Đặt A=n.(5n+3)
TH1: n là số chẵn => Đặt n=2k (k\(\in\)Z)
Khi đó: \(A=2.k.\left(5.2k+3\right)⋮2\)
TH2: n là số lẻ => Đặt n=2m+1
Khi đó: \(A=\left(2m+1\right)\left[5.\left(2m+1\right)+3\right]\)
\(A=\left(2m+1\right)\left(10m+5+3\right)\)
\(A=\left(2m+1\right)\left(10m+8\right)\)
\(A=\left(2m+1\right).2\left(5m+4\right)⋮2\)
Vậy: với mọi n\(\in Z\) thì n.(5n+3) luôn chia hết cho 2
Chứng minh rằng với mọi n thuộc Z ta luôn co :
n (5n + 3 ) chia hết cho 2
xét n ⋮ 2 => n(5n + 3) ⋮ 2
xét n không chia hết cho 2 => n = 2k + 1
=> n(5n + 3) = (2k + 1)[5(2k + 1) + 3)
= (2k + 1)(10k + 8)
= 2(5k + 4)(2k + 1) ⋮ 2
vậy với mọi n nguyên thì n(5n + 3) ⋮ 2
Đặt A = n . (5n + 3 )
TH1 : n là số chẵn
\(\Rightarrow\)n = 2k ( k \(\in Z\))
Khi đó ta có : A = 2k . (5 . 2k +3 ) \(⋮2\)
TH2 : n là số lẻ
\(\Rightarrow\)n = 2b + 1
Khi đó ta có : A = (2b + 1) . [ 5 .(2b + 1 ) + 3 ]
A = (2b+1) . ( 10b + 5 + 3 )
A = (2b + 1) . (10b + 8)
A = (2b + 1 ) . 2 . (5b + 4) \(⋮2\)
Vậy với mọi n thuộc Z ta luôn có n . (5n + 3 ) \(⋮2\)\(\rightarrowĐPCM\)
#HOK TỐT #
Chứng minh rằng với mọi n thuộc Z ta luôn co :
n (5n + 3 ) chia hết cho 2
đặt a=n(5n+3)
TH1:nlà số chẵn=>đặt n=2k(k thuộc Z)
Khi đó : A=2k(5*2k+3)⋮2
TH2:n là số lẻ=>đặt n=2m+1
Khi đó A=(2m+1){5(2m+1)+3}
A=(2m+1)(10m+5+3)
A=(2m+1)(10m+8)
A=(2m+1)2(5m+4)⋮2
Vậy với mọi n∈Z thì n(5n+3)luôn ⋮ cho 2
n(5n+3)⋮2 ⇒ n(5n+3) là số chẵn
TH1: n là số chẵn
n(5n+3)
= n.5n+n.3
Vì n là số chẵn⇒n.5n là số chẵn
n.3 là số chẵn
⇒n.5n+n.3=số chẵn+số chẵn=số chẵn
⇒n(5n+3) là số chẵn
⇒n(5n+3)⋮2
TH2: n là số lẻ
n(5n+3)
= n.5n+n.3
Vì n là số lẻ⇒n.5n là số lẻ
n.3 là số lẻ
⇒n.5n+n.3=số lẻ+số lẻ=số chẵn
⇒n(5n+3) là số chẵn
⇒n(5n+3)⋮2
Chứng minh:
a) n^5 - 5n^3 + 4n chia hết cho 120 ( với mọi n thuộc Z )
b) n^3 - 3n^2 - n + 3 chia hết cho 48 ( với n lẻ )
Giúp mình với: chứng minh rằng với mọi số nguyên tố n, ta có:
a)n^5-5n^3+4n chia hết cho 120
b) n^3-3n^2-n+3 chia hết cho 48 với mọi n lẻ?
\(a,n^5-5n^3+4n\)
\(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-4\right)\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)\(\Rightarrow\) \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\) Hay \(n^5-5n^3+4⋮120\)
Giúp mình với: chứng minh rằng với mọi số nguyên tố n, ta có:
a)n^5-5n^3+4n chia hết cho 120
b) n^3-3n^2-n+3 chia hết cho 48 với mọi n lẻ?
Chứng minh với mọi n thuộc Z thì:
a, n^7 -n chia hết cho 7
b, 2n^3+3n^2+n chia hết cho 6
c, n^5-5n^3+4n chia hết cho 120
d,n^3-3n^2-n+3 chia hết cho 48
CÁC BN GIÚP MIK VS NHA!!! CẢM ƠN NHÌU NHÌU NEK!!!>3<!!!
a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\), \(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)
Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)
Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0
b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)
\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3
Đặt n=3k+1 và n=3k+2. Tự thế vài và CM
c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)
\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Dễ thấy đẳng thức trên chia hết cho 5
Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)
Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)
Và tích của hai số bất kì cũng chia hết cho 2
Vậy đẳng thức trên chia hết cho 3.4.2.5=120
Cậu cuối bn chứng minh cách tương tự. :)
Mik cảm ơn bn nhìu nha!!!!^-^!!!