1/2 + 2/2^2 + 3/2^3 + ... + 2022/2^2022 so sánh với 2
T=\(\dfrac{2}{2}+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\) so sánh với 3
Các P/S đó > 3 nhé#
Kí hiệu # : nhận biết đây là tips, câu hỏi, câu trl của riêng mình, tuyệt đối ko copy dưới mọi hình thức. Trừ khi các bn đc sự cho phép của mik^^
>3 nhé
#Ko dựa trên căn bản kĩ thuật nào nên có thể có sai sót mong bn bỏ qua
so sánh b=1/2022+2/2021+3/2020+...+2021/2+2022/1 VÀ c=1/2+1/3+1/4+...+1/2022+1/2023
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
Q=1/5+2/5^2+3/5^3+...+2021/5^2021+2022/5^2022
So sánh Q với 5/36
so sánh A = 2022^2023 + 3/2022^2022 - 1 và B = 2022^2023 - 2019/2022^2022 - 2
(1 - 1/ 1+2).(1 - 1/ 1+2+3).....(1 - 1/ 1+2+3+...+2022), so sánh với 1/2
Đặt dãy trên có tổng là A
Ta có A= (0/1+2)(0/1+2+3). ... .(0/1+2+3+...+2022)
=> A=0+0+0+...+0+0+0=0
do 1/2= 0,5 và 0,5 >0 => 0>A
So sánh C= 1/2^2 + 1/3^2+1/4^2+...+1/2022^2 với 13/18
\(C=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2022^2}\)
\(C=\dfrac{1}{\left(2+3+4+...+2022\right)^2}\)
\(C=\dfrac{1}{\left(2022-2+1\right)^2}\)
\(C=\dfrac{1}{2021^2}\)
\(C=\dfrac{1}{2021\cdot2021}\)
\(C=\dfrac{1\div2021}{2021}\)
\(C=1\)
Vì \(1>\dfrac{13}{18}\)
\(\Rightarrow C>\dfrac{13}{18}\)
cho A=1+2022+2022^2+2022^3 +2022^4+...+2022^2016 + 2022^2017
và B= 2022^2018-1 . so sánh A và B
\(2022A=2022+2022^2+2022^3+2022^4+...+2022^{2018}\)
\(2021A=2022A-A=2022^{2018}-1\Rightarrow A=\dfrac{2022^{2018}-1}{2021}\)
\(\Rightarrow A< B\)
cho tổng
M = 1/3+ 2/3^2+3/3^3+.....+ 2022/3^2022+ 2023/3^2023
So sánh M với 3/4
Cho tổng A=2+\(2^2\)+\(2^3\)+....+\(2^{2021}\).Hãy so sánh A với \(2^{2022}\)-2
\(A=2+2^2+2^3+\dots+2^{2021}\\2A=2^2+2^3+2^4+\dots+2^{2022}\\2A-A=(2^2+2^3+2^4+\dots+2^{2022})-(2+2^2+2^3+\dots+2^{2021})\\A=2^{2022}-2\)
2A=2.( 2+ 22 + 23 + ... + 22021)
2A - A = ( 22+ 23+ 24+...+ 22022) - ( 2 + 22+ 23+...+ 2 2021)
A= 2022-2
mà : 2022-2 = 2022-2
=> A bằng 2022-2