Lời giải:
Gọi tổng trên là $A$
\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{2022}{2^{2022}}\)
\(2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{2022}{2^{2021}}\)
\(A=2A-A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2021}}-\frac{2022}{2^{2022}}\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2020}}-\frac{2022}{2^{2021}}\)
\(A=2A-A=2-\frac{2022}{2^{2021}}-\frac{1}{2^{2021}}+\frac{2022}{2^{2022}}=2-\frac{2024}{2^{2022}}<2\)