Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đanh khoa
Xem chi tiết
Hoàng Thị Lan Hương
27 tháng 7 2017 lúc 15:31

Từ \(9x^2+4y^2=20xy\Rightarrow9x^2-20xy+4y^2=0\)

\(\Leftrightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\)\(\Leftrightarrow\left(x-2y\right)\left(9x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=2y\\x=\frac{2}{9}y\end{cases}}\)

Với \(x=2y\Rightarrow A=\frac{3.2y+2y}{3.2y-2y}=\frac{8y}{4y}=2\)

Với \(x=\frac{2}{9}y\Rightarrow A=\frac{3.\frac{2}{9}y+2y}{3.\frac{2}{9}y-2y}=\frac{\frac{8}{3}y}{-\frac{4}{3}y}=-2\)

Đinh Chí Công
30 tháng 7 2017 lúc 18:17

Từ \(9x^2+4y^2=20xy\Rightarrow9x^2-20xy+4y^2=0\)

\(\Leftrightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\Leftrightarrow\left(x-2y\right)\left(9x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=2y\\x=\frac{2}{9}y\end{cases}}\)

Với \(x=2y\Rightarrow A=\frac{3\cdot2y+2y}{3\cdot2y-2y}=\frac{8y}{4y}=2\)

Với \(x=\frac{2}{9}y\Rightarrow A=\frac{3\cdot\frac{2}{9}y+2y}{3\cdot\frac{2}{9}y-2y}=\frac{\frac{8}{3}y}{-\frac{4}{3}y}=-2\)

bí mật
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2020 lúc 20:11

Ta có: \(A^2=\dfrac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}\)

\(=\dfrac{9x^2+4x^2-12xy}{9x^2+4x^2+12xy}\)

\(=\dfrac{20xy-12xy}{20x^2+12xy}\)

\(=\dfrac{8xy}{32xy}=\dfrac{1}{4}\)

\(\Leftrightarrow A\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)(1)

Vì 2y<3x<0 nên 3x-2y>0 và 3x+2y<0

hay \(A=\dfrac{3x-2y}{3x+2y}< 0\)(2)

Từ (1) và (2) suy ra \(A=-\dfrac{1}{2}\)

Vậy: \(A=-\dfrac{1}{2}\)

Trương Lan Anh
Xem chi tiết
ST
18 tháng 7 2018 lúc 9:29

Ta có: \(9x^2+4y^2=20xy\Leftrightarrow9x^2-12xy+4y^2=8xy\Leftrightarrow\left(3x-2y\right)^2=8xy\) (1)

Mặt khác: \(9x^2+4y^2=20xy\Leftrightarrow9x^2+12xy+4y^2=32xy\Leftrightarrow\left(3x+2y\right)^2=32xy\) (2)

Từ (1) và (2) => \(\frac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}=\frac{8xy}{32xy}\Leftrightarrow\left(\frac{3x-2y}{3x+2y}\right)^2=\frac{1}{4}\Leftrightarrow\frac{3x-2y}{3x+2y}=\pm\frac{1}{2}\)

Mà \(2y< 3x< 0\Rightarrow A=\frac{3x-2y}{3x+2y}=\frac{-1}{2}\)

le khoi nguyen
Xem chi tiết
Đặng Ngọc Quỳnh
10 tháng 1 2021 lúc 10:55

Ta có: \(A^2=\frac{9x^2+4y^2-12xy}{9x^2+4y^2+12xy}=\frac{20xy-12xy}{20xy+12xy}=\frac{8xy}{32xy}=\frac{1}{4}\)

Vì \(2y< 3x< 0\Rightarrow3x-2y>0,3x+2y< 0\Rightarrow A< 0\)

Vậy A= \(\frac{-1}{2}\)

Khách vãng lai đã xóa
Yen Nhi
10 tháng 1 2021 lúc 11:07

Ta có :

\(A^2=\frac{9x^2+4y^2-12xy}{9x^2+4y^2+12xy}\)\(=\frac{20xy-12xy}{20xy+12xy}\)\(=\frac{8xy}{32xy}\)\(=\frac{1}{4}\)

\(Do\)\(2y< 3x< 0\Rightarrow3x-2y>0;3x+2y< 0\Rightarrow A< 0\)

Vậy \(A=-\frac{1}{2}\)

Khách vãng lai đã xóa
Tô Hoài Dung
Xem chi tiết
Nguyễn Văn Tiến
Xem chi tiết
Cipher Thanh
31 tháng 8 2017 lúc 19:36

Ta có \(9x^2+4y^2=20xy\Leftrightarrow9x^2+2.3x.2y+4y^2=8xy\Leftrightarrow\left(3x+2y\right)^2=8xy\)\(32xy\)

Mặt khác \(9x^2+4y^2=20xy\Leftrightarrow9x^2-2.3x.2y+4y^2=8xy\Leftrightarrow\left(3x-2y\right)^2=8xy\)

\(\Rightarrow\frac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}=\frac{8xy}{32xy}=\frac{1}{4}\)\(\Leftrightarrow\left(\frac{3x-2y}{3x+2y}\right)^2=\frac{1}{4}\Leftrightarrow\frac{3x-2y}{3x+2y}=+-\frac{1}{2}\)

Do \(2y< 3x< 0\Rightarrow A=-\frac{1}{2}\)

Nguyễn Đình Nam
Xem chi tiết
Nguyễn Trần Uyển Nhi
5 tháng 3 2016 lúc 21:35

ta có 

9x2+12xy+4y2=32xy

=>(3x+2y)2=32xy =>3x+2y=\(\sqrt{32xy}\)

mặt khác

9x2-12xy+4y2=8xy

=>(3x-2y)2=8xy  =>3x-2y=\(\sqrt{8xy}\)

vậy \(\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}\)

=0,5

Nguyễn Trần Uyển Nhi
5 tháng 3 2016 lúc 21:42

đề này có trong violimpic vòng 15

hôm qua mình đi thi có gặp bài này ko bt sai hay đúng nữa

mà hình như mình làm sai dấu

fan FA
Xem chi tiết
Huỳnh Quang Sang
14 tháng 7 2018 lúc 21:17

Ta có : b,  \((3x-2y)^2=9x^2-12xy+4y^2=20xy-12xy=8xy\)

\(\Rightarrow3x-2y=\sqrt{8xy}\)                             \((1)\)

\((3x+2y)^2=9x^2+12xy+4y^2=20xy+12xy=32xy\)

\(\Rightarrow3x+2y=\sqrt{32xy}\)                             \((2)\)

Từ \((1)\) và      \((2)\), suy ra :

\(\Rightarrow\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}=0,5\)