Cho tam giác ABC . Kẻ BD vuông góc với AC( D∈AC)
Chứng minh:3BD2+2AD2+CD2=AB2+BC2+CA2 thì tam giác ABC cân
Cho tam giác ABC . Kẻ BD vuông góc với AC( D∈AC) Chứng minh:3BD2+2AD2+CD2=AB2+BC2+CA2 thì tam giác ABC cân
Cho tam giác cân ABC (AB = AC), đường cao CD (D ở giữa A và B).
Chứng minh rằng: AB2 + BC2 + AC2 = BD2 + 2AD2 + 3DC2
Cho tứ giác ABCD có hai đường chéo AC vuông góc với BD. Chứng minh rằng:
AB2 + CD2 = AD2 + BC2
cho tam giác abc cân tại a kẻ ah vuông góc với bc
chứng minh rằng tam giác ahb = tam giác ahc
chứng minh hc=hb
kẻ hd vuông góc ab;he vuông góc ac chứng minh tam giác hde cân;
ab2-ad2=dh2-bh2
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)
xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB=90 độ
góc B chung
suy ra tam giác ABC đồng dạng với tam giác HBA
suy ra AB phần HB = BC phần AB
cho tam giác ABC vuông cân ở A ,kẻ BD vuông góc với AC , CE vuông góc AB ( D thuộc AC);. Gọi O là giao điểm của BD và CE
a) chứng minh : AD = AE
b) chứng minh : tam giác OBC cân
c) chứng minh : AO vuông góc với BC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔADB=ΔAEC
Suy ra: AD=AE
b: Ta có: \(\widehat{ABC}=\widehat{ABD}+\widehat{OBC}\)
\(\widehat{ACB}=\widehat{ACE}+\widehat{OCB}\)
mà \(\widehat{ABC}=\widehat{ACB}\)
và \(\widehat{ABD}=\widehat{ACE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOCB cân tại O
Cho tam giác ABC cân tại A, kẻ BD vuông góc với AC (D thuộc AC), CE vuông góc với AB( E thuộc AB)
a) Chứng minh BD=CE
b) Gọi I là giao điểm của BD và CE. Chứng minh tam giác IBC cân
Xét tam giácBCE= tam giác CBD (cạnh huyền -mgóc nhọn)
góc ABC = góc ACB ( cân tại A)
BC chung
==> BD=CE
b) Tam giác BCE=tam giác CBD chứng minh ở câu a nên
góc BCE = góc DBC
--> IBC cân tại I
Vẽ tam giác ABC cân tại A kẻ K vuông góc vưới BC
a,Chứng minh KB=KC
b, từ K kẻ D vuông góc AB ( D thuộc AB),từ K kẻ E vuông góc với AC (E thuộc AC) chứng minh tam giác DEK là tam giác cân
c, Nếu tam giác ABC =120độ thì tam giác KED là tam giác gì ? vì sao ?
MN giúp mk với ạ ! mk cần gấp lắm mk xin cảm ơn ạ:>
a: Ta có: ΔABC cân tại A
mà AK là đường cao
nên K là trung điểm của BC
hay KB=KC
b: Xét ΔADK vuông tại D và ΔAEK vuông tại E có
AK chung
\(\widehat{DAK}=\widehat{EAK}\)
Do đó:ΔADK=ΔAEK
Suy ra: KD=KE
hay ΔKDE cân tại K
Cho tam giác ABC có AM vuông góc với BC. Kẻ MD vuông góc với AB tại D. Kẻ ME vuông góc với AC tại E. Biết BD = CE, chứng minh tam giác ABC cân.
Cho tam giác ABC có ba góc nhọn và AB>AC. Tam giác ABC nội tiếp đường tròn (O;R). Đường cao AH của tam giác ABC cắt đường tròn (O;R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M.
a) Chứng minh tứ giác BDHM nội tiếp đường tròn.
b) Chứng minh DA là tia phân giác của MDC
c) Gọi N là hình chiếu vuông góc của D lên đường thẳng AC, chứng minh ba điểm M, H, N thẳng hàng.
d) Chứng minh AB2 + AC2 + CD2 + BD2 = 8R2