TÍNH A=(3/4-81)(3^2/5-81)(3^3/6-81)...(3^2013/2016-81)
Tính :
\(A=\left(\frac{3}{4}-81\right)\cdot\left(\frac{3^2}{5}-81\right)\cdot\left(\frac{3^3}{6}-81\right)\cdot.....\cdot\left(\frac{3^{2013}}{2016}-81\right)\)
Ta có
\(A=\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)...\left(\frac{3^6}{9}-81\right)...\left(\frac{3^{2013}}{2016}-81\right)=\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)...\left(\frac{729}{9}-81\right)...\left(\frac{3^{2013}}{2016}-81\right)=0\)
vì 729/9=81
Vậy A=0
k me đi
\(\left(\frac{3}{4}-81\right).\left(\frac{3^2}{5}-81\right).\left(\frac{3^3}{6}-81\right).\left(\frac{3^4}{7}-81\right).\left(\frac{3^5}{8}-81\right).\left(\frac{729}{9}-81\right)....\left(\frac{3^{2013}}{2016}-81\right)\)
=>....................................................................................................................(81-81)..............................................
=>.....................................................................................................................0.....................................................
=>A=0
\(C=\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(\frac{3^{2013}}{2016}-81\right)\)
theo bài ra ta có:
\(C=\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(\frac{3^{2013}}{2016}-81\right)\)
C = \(\left(\frac{3}{4}-81\right)...\left(\frac{3^6}{9}-81\right)...\left(\frac{3^{2013}}{2016}-81\right)\)
\(C=\left(\frac{3}{4}-81\right)...\left(81-81\right)...\left(\frac{3^{2013}}{2016}-81\right)\)
C = \(\left(\frac{3}{4}-81\right)...0...\left(\frac{3^{2013}}{2016}-81\right)\)
C = 0
vậy C = 0
(3/4-81)(32/5-81)(33/6-81)...(32016/2019-81)
(3/4 - 81)(32 - 81)(33/6 - 81)...(32016/2019 - 81)
tính(3/4 -81)(3^2/5 -81).(3^3//6 -81)...(3^2000/2023 -81)
tính (3^1/4-81)*(3^2/5-81)*(3^3/6-81)*...*(3^2001/2010-81)
Tính: \(A=\frac{3}{4-81}.\frac{3^2}{5-81}.\frac{3^3}{6-81}...\frac{3^{2000}}{2003-81}\)
Tính:
\(\left(\dfrac{3}{4}-81\right).\left(\dfrac{3^2}{5}-81\right).\left(\dfrac{3^3}{6}-81\right).....\left(\dfrac{3^{2000}}{2003}-81\right)\)
Đặt \(A=\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\left(\dfrac{3^3}{6}-81\right)\cdot...\cdot\left(\dfrac{3^{2000}}{2003}-81\right)\)
\(=\left(\dfrac{3^6}{9}-81\right)\cdot\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\cdot...\cdot\left(\dfrac{3^{2000}}{2003}-81\right)\)
\(=\left(81-81\right)\cdot\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\cdot...\cdot\left(\dfrac{3^{2000}}{2003}-81\right)\)
=0
Tính giá trị của biểu thức (3/4 - 81).(32/5 - 81).(33/6 - 81).....(32011/2014 - 81)