(a+1)+(a+2)+(a+3)+(a+4)+(a+5)=65
tìm a
1.Tính: A=3/5+3/5^4+3/5^7+...+3/5^100
2.Chứng minh rằng: 1/3+2/3^2+3/3^3+4/3^4+5/3^5+...+100/3^100<3/4
3. Tính: S=a+a^2+a^3+a^4+...a^2022
B=a-a^2+a^3-a^4+...-a^2022
giúp mk vs ak :3
Bài 3:
a: a*S=a^2+a^3+...+a^2023
=>(a-1)*S=a^2023-a
=>\(S=\dfrac{a^{2023}-a}{a-1}\)
b: a*B=a^2-a^3+...-a^2023
=>(a+1)B=a-a^2023
=>\(B=\dfrac{a-a^{2023}}{a+1}\)
Cho 5 số nguyên tố phân biệt a1, a2, a3, a4, a5. Xét tích số sau:
A=(a1 - a2) . ( a1 - a3) . (a1 - a4) . (a1 - a5) . (a2 - a3) .(a2 - a4) . (a2 - a5) . (a3 - a4) . (a3 - a5) . (a4 - a5).Chứng minh rằng A chia hết cho 288
Cho 5 số nguyên phân biệt a1,a2,a3,a4,a5. Xét tích số sau:
A=(a1-a2)(a1-a3)(a1-a4)(a1-a5)(a2-a3)(a2-a4)(a2-a5)(a3-a4)(a3-a4)(a4-a5). Chứng minh A luôn chia hết cho 288
Xét tính chẵn, lẻ của 5 số ta có các trường hợp sau:
TH1: Cả 5 số đều chẵn (hoặc đều lẻ), khi đó tích \(\left(a_1-a_2\right)\left(a_1-a_3\right)\left(a_1-a_4\right)\left(a_1-a_5\right)\left(a_2-a_3\right)\left(a_2-a_4\right)\left(a_2-a_5\right)\) chia hết cho \(2^8\) => A chia hết cho 32
TH2: Có 4 số đều chẵn (hoặc đều lẻ), giả sử \(a_1,a_2,a_3,a_4\). Khi đó \(\left(a_1-a_2\right)\left(a_1-a_3\right)\left(a_1-a_4\right)\left(a_2-a_3\right)\left(a_2-a_4\right)\left(a_3-a_4\right)\) chia hết cho \(2^6\) => A chia hết cho 32
TH3: Có 3 số chẵn (hoặc lẻ), giả sử \(a_1=2b_1;a_2=2.b_2,a_3=2b_3\), còn 2 số kia lẻ (hoặc chẵn) , giả sử là \(a_4=2b_4+1,a_5=2b_5+1\)..
Khi đó \(\left(a_1-a_2\right)\left(a_1-a_3\right)\left(a_1-a_3\right)\left(a_4-a_5\right)=2^4\left(b_1-b_2\right)\left(b_1-b_3\right)\left(b_2-b_3\right)\left(b_4-b_5\right)\) chia hết cho \(2^4=16\)
Trong các số \(b_1,b_2,b_3\) sẽ lại có ít nhất hai số cùng chẵn (hoặc cùng lẻ), hiệu của hai số này chia hết cho 2. Vậy nên tích trên sẽ chia hết cho 32.
=> Tích A chia hết cho 32.
Ngoài 3 TH trên thì không còn trường hợp nào khác => A luôn chia hết cho 32.
Tương tự, khi chia 5 số cho 3 thì có ít nhất hai số có cùng số dư, giả sử \(a_1,a_2\). Khi đó \(a_1-a_2\) chia hết cho 3.
Xét 4 số \(a_2,a_3,a_4,a_5\) khi chia cho 3 cũng có 2 số có cùng số dư, giả sử \(a_2,a_3\). Khi đó \(a_2-a_3\) chia hết cho 3
=> A chia hết cho 3.3 = 9
A vừa chia hết cho 32, lại vừa chia hết cho 9 => A chia hết cho 32.9 = 288.
Cho 5 số nguyên phân biệt a1,a2,a3,a4,a5,
xét tích: P=(a1-a2)(a1-a3)(a1-a4)(a1-a5)(a2-a3)(a2-a4)(a2-a5)(a3-a4)(a3-a5)(a4-a5)
Chứng minh: P chia hết cho 288
Bạn xem hướng dẫn ở link phía dưới nhé:
Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath
xa xa, các bạn sẽ thấy lũy tre như bức tuờng thành kiên cố đang bảo vệ bao quanh thôn xóm mìnhcây tre nhỏ nhắn với thân dài thẳng, được chia thành những đốt nhỏ đều nhau. Thân cây thường có màu xanh thẫm, các đốt thì có màu hơi xanh đậm hơi vàng. Cây tre không đứng riêng lẻ với nhau, mà thường tạo thành từng lũy với cây này tựa cây kia, dựa vào nhau cùng vươn lên bất chấp nắng mưa để đón lấy ánh sớm bình minh. Các nhánh tre thường không mọc trên cao mà mọc ngay gần dưới đất, chúng có rất nhiều gai gồ ghề và thường rất nhỏ. Còn lá tre thì mỏng, nhọn, to chỉ bằng nửa lá xoài mà thôi, tuy lá tre trông mảnh khảnh nhưng rất dẻo dai. Họ nhà tre có đến vài chục loại khác nhau, nhưng cùng một điểm tương đồng, đó là cùng có mầm non măng mọc thẳng. Và tre cũng có hoa đó các bạn, nhưng phải hơn 100 năm nó mới ra hoa một lần. Hoa tre mọc thành từng chùm có màu vàng nhạt. Mùi thơm của hoa tre cũng rất đặc biệt đó ạ! Cây tre có nhiều loại, mỗi loại lại mang đến cho chúng ta một công dụng riêng. Có tre to để đan lát, có tre để làm hàng thủ công. Tre còn có thể được sử dụng để làm nhà cửa, lều quán. Tre gai lại là người canh gác giúp cho cho luỹ làng ta trở nên kiên cố..Không chỉ trở thành những vật dụng đồng hành cùng người nông dân trong cuộc sống thường ngày, cuộc sống lao động, cây tre còn có vai trò rất quan trọng trong thời kháng chiến. Ở đó, “tre giữ làng, giữ nước, giữ mái nhà tranh, giữ đồng lúa chín” (Thép Mới). Trong lúc mà dân ta chưa có vũ khí hiện đại, vu khí đều sử dụng phụ thuộc cả vào thiên nhiên. Tre với tính chất dẻo dai mà cứng rắn đã trở thành một vũ khí vô cùng lợi hại của dân ta. Chúng ta ắt hẳn vẫn còn nhớ tới truyền thuyết Thánh Gióng, bẻ tre bên đường, đánh cho quân xâm lược không còn manh giáp. Hay sự kiện Ngô Quyền dùng cọc tre và lợi dụng thủy triều đánh tan quân Nam Hán trên song Bạch Đằng vào năm 938. Đó là minh chứng rất cụ thể cho vai trò to lớn của cây tre trong những trận chiến khốc liệt dành độc lập dân tộc. Có tầm quan trọng như vậy, từ lâu cây tre đã đi vào tiềm thức của người dân Việt với rất nhiều biểu tượng. Tre luôn mọc thành lũy, thành hàng chứ không bao giờ mọc một mình, đó là tinh thần đoàn kết, đồng lòng. Tre mọc thẳng, mọc cao, không bao giờ mọc nghiêng, cùng sự dẻo dai dễ sống của cây là biểu hiện rõ nhất cho sự kiên cường, bất khuất. Đó đều là những phẩm chất đáng quý của con người Việt Nam, dân tộc Việt Nam, nên mới nói, nhắc đến cây tre là nhắc đến con người Việt Nam. Tre thật đẹp, thật có ích. Tre là biểu tượng không thể phai đổi, không thể mất đi, tre già măng mọc, sẽ còn mãi đến mai sau. Dù là chiến tranh đã lùi xa, cuộc sống trở nên hiện đại hơn nhưng cây tre vẫn mãi giữ một vị trí quan trọng trong tâm hồn người Việt.
Cho 5 số nguyên phân biệt a1,a2,a3,a4,a5,
xét tích: P=(a1-a2)(a1-a3)(a1-a4)(a1-a5)(a2-a3)(a2-a4)(a2-a5)(a3-a4)(a3-a5)(a4-a5)
Chứng minh: P chia hết cho 288
Bạn vào đây tìm đi Giáo án Toán 7 - Tuần 1 đến tuần 7 - Giáo Án, Bài Giảng
Chứng minh rằng : (a1-a2)(a1-a3)(a1-a4)(a1-a5)(a2-a3)(a2-a4)(a2-a5)(a3-a4)(a3-a5)(a4-a5) chia hết cho 288.
Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath
Cho sáu số a1 , a2 , a3 , a4 , a5 , a6 . Thỏa mãn a22 = a1a3 ; a32 = a2a4 ; a42 = a3a5 ; a52 = a4a6 . Chứng minh rằng : a1 ( a2 + a3 + a4 + a5 + a6 )5 = a6 ( a1 + a2 + a3 + a4 + a5 )5.
Theo đề ta có :
* \(a_2^2=a_1.a_3\) \(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}\) (1)
* \(a_3^2=a_2.a_4\Rightarrow\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\left(2\right)\)
* \(a_4^2=a_3.a_5\Rightarrow\dfrac{a_3}{a_4}=\dfrac{a_4}{a_5}\left(3\right)\)
* \(a^2_5=a_4.a_6\Rightarrow\dfrac{a_4}{a_5}=\dfrac{a_5}{a_6}\left(4\right)\)
Từ (1) ; (2) ; (3) và (4) nên ta có :
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=\dfrac{a_4}{a_5}=\dfrac{a_5}{a_6}\)
\(=\dfrac{a_1+a_2+a_3+a_4+a_5}{a_2+a_3+a_4+a_5+a_6}\) (5)
\(=\dfrac{a_1.a_2.a_3.a_4.a_5}{a_2.a_3.a_4.a_5.a_6}=\dfrac{a_1}{a_6}\) (6)
Từ (5) và (6) , ta có :
\(\dfrac{a_1+a_2+a_3+a_4+a_5}{a_2+a_3+a_4+a_5+a_6}=\dfrac{a_1}{a_6}\)
Áp dụng 2 phân số bằng nhau , ta có :
\(\left(a_1+a_2+a_3+a_4+a_5\right)a_6=\left(a_2+a_3+a_4+a_5+a_6\right)a_1\)
\(\left(đpcm\right)\)
Cho a(1), a(2), a(3), a(4), a(5) là các số nguyên dương. Chứng minh rằng tồn tại các số c(i) thuộc {-1;0;1}, i=1,...,5, không đồng thời bằng 0 sao cho c(1).a(1)+c(2).a(2)+c(3).a(3)+c(4).a(4)+a(5).c(5) chia hết cho 31.
Bài 1 Cho a+b=-3, ab=-2. Hãy tính giá trị của
a^2+b^2, a^4+b^4, a^3+b^3, a^5+a^5, a^7+a^7
Bài 2 Cho a+b=5, ab=-2(a<b). Hãy tính a^2+b^2, \(\dfrac{1}{a^3}+\dfrac{1}{b^3}\),a-b, a^3-b^3
Bạn nào bik dùng HĐT phụ thì giúp mình nhé
Bài 2:
\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=9\)
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)}{\left(ab\right)^3}\)
\(=\dfrac{5^3-3\cdot5\cdot\left(-2\right)}{\left(-2\right)^3}=\dfrac{125+30}{8}=\dfrac{155}{8}\)
\(a-b=-\sqrt{\left(a+b\right)^2-4ab}=-\sqrt{5^2-4\cdot\left(-2\right)}=-\sqrt{33}\)
Cho năm số nguyên phân biệt a1, a2, a3, a4, a5. Xét tích:
B = (a1-a2)(a1-a3)(a1-a4)(a1-a5)(a2-a3)(a2-a4)(a2-a5)(a3-a4)(a3-a5)(a4-a5)
Chứng minh: B chia hết cho 288.