a=1+4+4^2+4^3+4^4+......+4^99 chia hết cho 5 và 21 Giúp em với please
Chứng minh rằng : a, M = 21^9+21^8+21^7 +....+ 21+1 chia hết cho 2 và 5 b, N = 6+6^2+6^3 +....+ 6^2020 chia hết cho 7 nhưng không chia hết cho 9 c, P = 4+4^2+4^3 +....+ 4^23+4^24 chia hết cho 20 và 21 d, Q = 6+6^2+6^3 +....+ 6^99 chia hết cho 43
Hộ mình làm bài này nhá :))))))))
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
Bài 1: cm rằng:
1) M= 219+218+217+...+21+1chia hết cho 2 và 5
2) N=6+62+62+..62020 chia hết cho 7, không chia hết cho 9
3) P=4+42+43+...423+424 chia hết cho 20 và 21
4) Q=6+62+63+...+699 chia hết cho 43
A=1+4+4 mũ 2+...+4 mũ 58+4 mũ 59 chia hết cho 5 và 21
giúp minh với : )
A= ( 1+ 4+ 4 mũ 2 ) + ( 4 mũ 3 + 4 mũ 5 + 4 mũ 6 ) +.... + ( 4 mũ 57 + 4 mũ 58 + 4 mũ 59 )
Giúp mk vs ae :
S2 = 4+4^3+4^5+4^7+....................+4^99
Bài 2
3^102 - 1 chia hết cho 8
4^101 - 1 chia hết cho 3 và 5
Cho A = 4 + 4^2 + 4^3 + ... + 4^98 + 4^99. Chứng tỏ rằng A chia hết cho 21
`A=4+4^2+4^3+...+4^98 +4^99`
`A=(4+4^2+4^3)+...+(4^97 +4^98 +4^99)`
`A=4(1+4+4^2)+...+4^97 (1+4+4^2)`
`A=4.21+...+4^97 .21`
`A=21.(4+4^97) \vdots 21`
`=>Đpcm`
Mấy bn cute jup mk bài này nha! Bn nào trả lời đầy đủ, nhanh mk tick cho nè:
1.
a) Cho A= 1 + 3 + 32 + 33 +...+ 398 + 399. Chứng tỏ rằng A chia hết cho 4.
b) Cho A= 1 + 4 + 42 + 43 +...+ 458 + 459. Chứng tỏ rằng A chia hết cho 5 ; 21.
c) Cho A= 5 + 52 + 53 + 54 +...+ 539 + 540. Chứng tỏ rằng A chia hết cho 2 ; 3.
Bạn vào câu hỏi tương tự là có nha !
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Ko cs đầy đủ bn ơi!
a)
\(3A=3+3^2+3^3+...+3^{100}\)
=> \(3A-A=\left(3+3^2+...+3^{100}\right)-\left(1+3+...+3^{99}\right)\)
=> \(2A=3^{100}-1\)
=> \(A=\frac{3^{100}-1}{2}\)
=> \(A=\frac{9^{50}-1}{2}\) => \(\frac{A}{4}=\frac{9^{50}-1}{8}\)
Có: \(9\equiv1\left(mod8\right)\)
=> \(9^{50}\equiv1\left(mod8\right)\)
=> \(9^{50}-1⋮8\)
=> \(\frac{9^{50}-1}{8}\in Z\)
=> \(\frac{A}{4}\in Z\)=> \(A⋮4\)
(ĐPCM)
Chứng minh rằng : a, M = 21^9+21^8+21^7 +....+ 21+1 chia hết cho 2 và 5 b, N = 6+6^2+6^3 +....+ 6^2020 chia hết cho 7 nhưng không chia hết cho 9 c, P = 4+4^2+4^3 +....+ 4^23+4^24 chia hết cho 20 và 21 d, Q = 6+6^2+6^3 +....+ 6^99 chia hết cho 43
Hộ mình làm bài này nhá :))))))))
Hãy chứng minh rằng
A= 1+4+42+43+....+458+459
a ) A Chia hết cho 5
b ) A chia hết cho 21
c ) A chia hết cho 85
Giúp với huhu
4A=4+4^2+4^3+.....+4^60
4A-A=(4+4^2+...+4^60)-(1+4+4^2+...+4^59)
3A=4^60-1
A=\(\frac{4^{60}-1}{3}\)
Trả lời giùm tui cái này nha
1+4+4^2+4^3+4^4+4^5+...+4^2023 chia hết cho 21 . Giúp nhanh giùm tui với nha ! Cảm ơn nhìu ạ
Lời giải:
$A=1+4+4^2+4^3+...+4^{2023}$
$A=1+4+(4^2+4^3+4^4)+(4^5+4^6+4^7)+...+(4^{2021}+4^{2022}+4^{2023})$
$=5+4^2(1+4+4^2)+4^5(1+4+4^2)+....+4^{2021}(1+4+4^2)$
$=5+(1+4+4^2)(4^2+4^5+...+4^{2021})$
$=5+21(4^2+4^5+....+4^{2021})$
Do đó biểu thức chia 21 dư 5
Các bạn ơi giúp mình với gấp lắm ạ
Bài 1 So sánh
a. 3^484 và 4^363
b. 3^500 và 5^300
c. 99^20 và 9999^10
d. 5^3n và 3^5n ( n thuộc N )
Bài 2 Tìm x thuộc N
a. 3^4 - 3^n = 3^7
b. 64 x 4^n = 4^5
c. 2^n+3 + 2^n = 144
Bài 3 : Cho A = 1 + 2 + 2^2 + ... + 2^20 và B = 2^21 . So sánh A và B
Bài 4 : Cho C = 1 + 3 + 3^2 + 3^3 + ... + 3^11 . Chứng minh rằng C chia hết cho 13 , C chia hết cho 40
Bài 5 : Tìm số dư khi chia A cho 7 biết
A = 1+ 2 + 2^2 + ... + 2^2001 + 2^2002
Giúp mình nha Cảm ơn các bạn nhiều TOÁN 6