Lập phương trình chính tắc của elip biết tỉ số giữa độ dài trục nhỏ và tiêu cự bằng 2 , tổng bình phương độ dài trục lớn và tiêu cự bằng 64.
A. x 2 12 + y 2 8 = 1.
B. x 2 8 + y 2 12 = 1.
C. x 2 12 + y 2 4 = 1.
D. x 2 8 + y 2 4 = 1.
Lập phương trình chính tắc của elip biết tỉ số giữa độ dài trục nhỏ và tiêu cự bằng 2 , tổng bình phương độ dài trục lớn và tiêu cự bằng 64.
A. x 2 12 + y 2 8 = 1.
B. x 2 8 + y 2 12 = 1.
C. x 2 12 + y 2 4 = 1.
D. x 2 8 + y 2 4 = 1.
Elip (E) có tỉ số độ dài trục nhỏ và tiêu cự bằng 2 ⇒ 2 b 2 c = 2 ⇒ c = b 2 2 .
Mặt khác, 2 a 2 + 2 c 2 = 64 ⇔ a 2 + c 2 = 16 .
Ta có
c = b 2 2 a 2 + c 2 = 16 a 2 = b 2 + c 2 ⇒ a 2 + 1 2 b 2 = 16 a 2 − 3 2 b 2 = 0 ⇔ a 2 = 12 b 2 = 8
Phương trình chính tắc của Elip là E : x 2 12 + y 2 8 = 1 .
Chọn A.
trong mặt phẳng với hệ tọa độ Oxy, cho elip(E) có phương trình chính tắc \(\dfrac{x^2}{169}+\dfrac{y^2}{25}=1\)
, với hai tiêu điểm là F1 và F2. Với điểm M bất kì trên (E) thì chu vi tam giác MF1F2 là
Chu vi: \(P=F_1F_2+MF_1+MF_2=2c+2a=2\sqrt{a^2-b^2}+2a=2\sqrt{169-25}+2.13=50\)
a) Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=3\cos2x+2\cos^2x\). Tính T=19M+5m
b) Viết phương trình chính tắc của elip đi qua điểm A(\(\left(2;\sqrt{3}\right)\) và tỉ số của độ dài trục lớn với tiêu cự bằng \(\dfrac{2}{\sqrt{3}}\)
Xác định độ dài các trục, tọa độ các tiêu điểm, tọa độ các đỉnh của các elip có phương trình sau :
a) \(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\)
b) \(4x^2+9y^2=1\)
c) \(4x^2+9y^2=36\)
a) Ta có: a2 = 25 => a = 5 độ dài trục lớn 2a = 10
b2 = 9 => b = 3 độ dài trục nhỏ 2a = 6
c2 = a2 – b2 = 25 - 9 = 16 => c = 4
Vậy hai tiêu điểm là : F1(-4 ; 0) và F2(4 ; 0)
Tọa độ các đỉnh A1(-5; 0), A2(5; 0), B1(0; -3), B2(0; 3).
b)
4x2 + 9y2 = 1 <=> + = 1
a2= => a = => độ dài trục lớn 2a = 1
b2 = => b = => độ dài trục nhỏ 2b =
c2 = a2 – b2
= - = => c =
F1(- ; 0) và F2( ; 0)
A1(-; 0), A2(; 0), B1(0; - ), B2(0; ).
c) Chia 2 vế của phương trình cho 36 ta được :
=> + = 1
Từ đây suy ra: 2a = 6. 2b = 4, c =\(\sqrt{5}\)
=> F1(-\(\sqrt{5}\) ; 0) và F2(\(\sqrt{5}\) ; 0)
A1(-3; 0), A2(3; 0), B1(0; -2), B2(0; 2).
Viết phương trình chính tắc của elip (E) trong mỗi trường hợp sau :
a) Độ dài trục nhỏ bằng 12 và tiêu cự bằng 16
b) Một tiêu điểm là (12; 0) và điểm (13; 0) nằm trên elip
a) \(\left(E\right):\dfrac{x^2}{100}+\dfrac{y^2}{36}=1\)
b) \(\left(E\right):\dfrac{x^2}{169}+\dfrac{y^2}{25}=1\)
Cho elip (E) có phương trình \(\dfrac{x^2}{16}+\dfrac{y^2}{9}=1\) và điểm \(A\left(1;2\right)\)
a) Tìm độ dài trục lớn, trục nhỏ và tiêu cự của (E)
b) Viết phương trình đường thẳng \(\Delta\) đi qua điểm A và cắt (E) tại \(M_1\) và \(M_2\) sao cho \(AM_1=AM_2\)
Phương trình đường ELIP có dạng (E) :
(E) đi qua M(0; 3), nên :
=>b= 3.
(E) đi qua N(3; -12/5), nên :
=> a = 5.
Phương trình đường ELIP có dạng (E) :
có tiệu điểm F(; 0) => c = => a2 – b2 = 3 (1)
(E) đi qua M(1 ; ), nên : (2)
Từ (1) và (2) , ta được :
a2 = 4 ; b2 = 1
vậy : (E) :
Phương trình chính tắc của elip có độ dài trục nhỏ bằng 12, độ dài tiêu cự bằng 8 là
A. x 2 36 + y 2 20 = 1
B. x 2 52 + y 2 36 = 1
C. x 2 208 + y 2 144 = 1
D. x 2 144 + y 2 80 = 1
Trong mặt phẳng với hệ trục tọa độ Oxy cho elip (E) có độ dài trục nhỏ bằng 8 và độ dài tiêu cự bằng 10 Phương
trình nào sau đây là phương trình của elip (E)
A. x 2 25 + y 2 16 = 1
B. x 2 16 + y 2 41 = 1
C. x 2 36 + y 2 9 = 1
D. x 2 41 + y 2 16 = 1
Ta có: độ dài trục nhỏ là 8 nên 2b = 8 => b= 4.
Độ dài tiêu cự là 10 nên 2c = 10 => c= 5.
Lại có : a2= b2+ c2= 16+ 25= 41
Vậy phương trình của Elip là: x 2 41 + y 2 16 = 1
Chọn D.
Viết phương trình chính tắc của:
a) Elip có trục lớn bằng 20 và trục nhỏ bằng 16
b) Hypebol có tiêu cự \(2c = 20\) và độ dài trục thực \(2a = 12\)
c) Parabol có tiêu điểm \(F\left( {\frac{1}{2};0} \right)\)
a) Ta có \(2a = 20 \Rightarrow a = 10,2b = 16 \Rightarrow b = 8\).
Vậy phương trình chính tắc của elip có dạng \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\)
b) Ta có \(2a = 12 \Rightarrow a = 6,2c = 20 \Rightarrow c = 10\), suy ra \(b = \sqrt {{c^2} - {a^2}} = \sqrt {{{10}^2} - {6^2}} = 8\)
Vậy phương trình chính tắc của hypebol có dạng \(\frac{{{x^2}}}{{36}} - \frac{{{y^2}}}{{64}} = 1\)
c) Ta có tiêu điểm \(F\left( {\frac{1}{2};0} \right)\).
Do đó, \(\frac{p}{2} = \frac{1}{2}\) suy ra \(p = 1\).
Vậy phương trình chính tắc của parabol là \({y^2} = 2x\).
Phương trình chính tắc của elip có độ dài trục lớn bằng hai lần độ dài trục nhỏ và tiêu cự bằng 6 là:
A. x 2 64 + y 2 36 = 1
B. x 2 12 + y 2 3 = 1
C. x 2 9 + y 2 12 = 1
D. 9 x 2 + 12 y 2 = 108