Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngoc Quang Duong
Xem chi tiết
Nguyễn Thị Thương Hoài
22 tháng 12 2022 lúc 11:57

Dùng phương pháp chặn :

\(\le\) y \(\le\) z \(\Rightarrow\) x2 \(\le\) y2 \(\le\) z2 \(\Rightarrow\) x2 + y2 + z2 \(\le\) 3z2 

\(\Rightarrow\) 3z2 \(\ge\) 34 \(\Leftrightarrow\) z2 \(\ge\) 34/3  (1)

x2 + y2 + z2  = 34 mà x,y,z \(\in\) N \(\Rightarrow\) z2 \(\le\) 34 (2)

Kết hợp (1) và (2) ta có : 

34/3  \(\le\) z2 \(\le\)  34 

\(\Rightarrow\) z2 \(\in\) { 16; 25}

vì z \(\in\) N\(\Rightarrow\) z \(\in\) { 4; 5}

th1 Z = 4 ta có :

x2 + y2 + 16 = 34

x2 + y2 = 12 

\(\le\) y \(\Rightarrow\) x2 \(\le\)y2 \(\Rightarrow\) x2 + y2 \(\le\) 2y2 \(\Rightarrow\) 12 \(\le\)2y2 \(\Rightarrow\) y2 \(\ge\) 6 (*)

x2 + y2 = 12 \(\Rightarrow\) y2 \(\le\) 12 (**)

Kết hợp (*) và (**) ta có :

\(\le\) y2 \(\le\) 12 \(\Rightarrow\) y2 = 9 vì y \(\in\) N\(\Rightarrow\) y = 3

với y = 3 ta có : x2 + 32 = 12 \(\Rightarrow\) x2 = 12-9 = 3 \(\Rightarrow\) x = +- \(\sqrt{3}\)(loại vì x \(\in\) N)

th2 : z = 5 ta có :

x2 + y2 + 25 = 34

\(\Rightarrow\) x2 + y2 = 34 - 25  = 9

\(\le\) y \(\Rightarrow\) x2 \(\le\) y2 \(\Rightarrow\) x2 + y2 \(\le\)2y2 \(\Rightarrow\) 2y2 \(\ge\) 9 \(\Rightarrow\) y2 \(\ge\) 9/2 (a)

x2 + y2 = 9 \(\Rightarrow\) y2 \(\le\) 9 (b)

Kết hợp (a) và (b) ta có :

9/2 \(\le\) y2 \(\le\) 9 \(\Rightarrow\) y2 = 9 vì y \(\in\) N \(\Rightarrow\) y = 3

với y = 3 \(\Rightarrow\) x2 + 32 = 9 \(\Rightarrow\) x2 = 0 \(\Rightarrow\) x = 0

kết luận (x; y; z) =( 0; 3; 5) là nghiệm duy nhất thỏa mãn pt 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 1 2017 lúc 5:52

Đáp án B

Nguyễn Phú Hoàng Phong
Xem chi tiết
Akai Haruma
14 tháng 6 2021 lúc 23:47

Lời giải:

$x^5+y^5+z^5=(x^2+y^2+z^2)(x^3+y^3+z^3)-[x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)]$

Mà:

$x^3+y^3+z^3=(x+y)^3-3xy(x+y)+z^3$

$=(-z)^3-3xy(-z)+z^3=3xyz$

Và:

\(x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)\)

\(=x^2y^2(x+y)+y^2z^2(y+z)+z^2x^2(z+x)=-x^2y^2z-y^2z^2x-x^2y^2z\)

\(=-xyz(xy+yz+xz)=-xyz[\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}]=\frac{xyz(x^2+y^2+z^2)}{2}\)

Do đó: \(x^5+y^5+z^5=3xyz(x^2+y^2+z^2)-\frac{xyz(x^2+y^2+z^2)}{2}=\frac{5xyz(x^2+y^2+z^2)}{2}\)

\(\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)\)

Ta có đpcm.

 

 

Nguyên Phương
Xem chi tiết
Trần Tuấn Hoàng
12 tháng 1 2023 lúc 14:47

Ta có: \(x^2+y^2+z^2=1\)

\(\Rightarrow x\le1,y\le1,z\le1\)

\(\Rightarrow x-1\le0,y-1\le0,z-1\le0\)

\(\Rightarrow x^2\left(x-1\right)\le0,y^2\left(y-1\right)\le0,z^2\left(z-1\right)\le0\) 

(vì \(x^2,y^2,z^2\ge0\))

\(\Rightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\).

hay \(x^3+y^3+z^3\le x^2+y^2+z^2=1\).

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x^2\left(x-1\right)=0\\y^2\left(y-1\right)=0\\z^2\left(z-1\right)=0\end{matrix}\right.\) và \(x^2+y^2+z^2=1\)

\(\Leftrightarrow\left(x,y,z\right)=\left(0;0;1\right)\) và các hoán vị.

Mặt khác theo giả thiết: \(x^3+y^3+z^3=1\).

\(\Rightarrow\left(x,y,z\right)=\left(0;0;1\right)\) và các hoán vị.

\(\Rightarrow xyz=0\)

Nguyễn Đom Đóm
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 21:55

\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{49}{16}\)

\(M_{min}=\dfrac{49}{16}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{\sqrt{7}};\dfrac{2}{\sqrt{14}};\dfrac{2}{\sqrt{7}}\right)\)

Nguyễn Đom Đóm
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 21:56

\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{7}{4}\)

\(M_{min}=\dfrac{7}{4}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{\sqrt{2}};1\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 2 2017 lúc 10:41

Ta có:

  P = 1 x ( 1 z 2 + 1 y 2 ) + 1 y ( 1 z 2 + 1 x 2 ) + 1 z ( 1 x 2 + 1 y 2 )

Đặt:  1 x = a ; 1 y = b ; 1 z = c  thì a,b,c>0 và a2+b2+c2=1

P = a b 2 + c 2 + b c 2 + a 2 + c a 2 + b 2 = a 2 a ( 1 − a 2 ) + b 2 b ( 1 − b 2 ) + c 2 c ( 1 − c 2 )

Áp dng bất đng thức Côsi cho 3 số dương ta có:

a 2 1 - a 2 2 = 1 2 .2 a 2 ( 1 − a 2 ) ( 1 − a 2 ) ≤ 1 2 2 a 2 + 1 − a 2 + 1 − a 2 3 = 4 27 = > a ( 1 − a 2 ) ≤ 2 3 3 < = > a 2 a ( 1 − a 2 ) ≥ 3 3 2 a 2 ( 1 )

Tương tự:  b 2 b ( 1 − b 2 ) ≥ 3 3 2 b 2 ( 2 ) ; c 2 c ( 1 − c 2 ) ≥ 3 3 2 c 2 ( 3 )

T (1); (2); (3) ta có  P ≥ 3 3 2 ( a 2 + b 2 + c 2 ) = 3 3 2

Đng thức xảy ra  a = b = c = 1 3 h a y   x = y = z = 3

Vậy giá trị nhỏ nhất của P là  3 3 2

Suzanna Dezaki
Xem chi tiết
Nguyễn Duy Khang
3 tháng 2 2021 lúc 15:39

Tham khảo :

Câu hỏi của Cô Gái Mùa Đông - Toán lớp 8 - Học trực tuyến OLM

oooloo
Xem chi tiết
Akai Haruma
4 tháng 1 2021 lúc 19:10

Bạn tham khảo lời giải tại đây:

cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24