Tìm x,y thuộc Z sao cho:x.y+3.x-5.y=22
tìm x;y sao cho:x.y-x+2y=3
xy-x+2y=3
=>x(y-1)+2(y-1)=1
=>(y-1)*(x+2)=1
=>y-1;x+2 thuộc Ư (1)
Y-1 1 -1
y 2 0
x+2 1 -1
x -1 -3
Vậy các cặp (x,y)là:
(2;-1),(0;-3)
Bài 1 : tìm x , y thuộc z :
a) x/3 - 4/y = 1/5
b) 3/11 + x/22 = y/11
Bài 2 : tìm n thuộc z sao cho để các phân số sau có giá trị nguyên:
A= 3n+4/ n - 1.
B= 6n-3/ 3n + 1
2.(x-5)-3.(x-4)=-6+15:9-3)
(x+7).(x-9)=0
/2x-5/-7=22
(/2x/-5)-7=22
tìm x,y thuộc z biết:x+y=x.y
Tìm x, y thuộc Z biết : 5|x| + 4|y| = 22
C1: tìm x,y,z thuộc N sao cho x^3+y^3=2Z^3 và x+y+z là SNT
C2: Tìm a thuộc N sao cho a+1,4a^+8a+5, 6a^2+12a+7 là SNT
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
Tìm x,y và z ( nếu có) biết:
x/y =2/5;y/z=5/3 và 2x - y + 3z = 16
x/5=y/3 ; y/5=z/4 và x - y + z = 22
\(\dfrac{x}{y}=\dfrac{2}{5}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}\)
\(\dfrac{y}{z}=\dfrac{5}{3}\rightarrow\dfrac{y}{5}=\dfrac{z}{3}\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{5},\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{2x}{4}=\dfrac{y}{5}=\dfrac{3z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(2x)/4=y/5=(3z)/9=(2x-y+3z)/(4-5+9)=16/8=2`
`-> x/2=y/5=z/3=2`
`-> x=2*2=4, y=2*5=10, z=2*3=6`
`x/5=y/3 -> x/25=y/15`
`y/5=z/4 -> y/15=z/12`
`x/25=y/15, y/15=z/12`
`-> x/25=y/15=z/12`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/25=y/15=z/12=(x-y+z)/(25-15+12)=22/22=1`
`-> x/25=y/15=z/12=1`
`-> x=25, y=15, z=12`
a: x/y=2/5
=>x/2=y/5
y/z=5/3
=>y/5=z/3
=>x/2=y/5=z/3
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{2x-y+3z}{2\cdot2-5+3\cdot3}=\dfrac{16}{8}=2\)
=>x=4; y=10; z=6
b: x/5=y/3
=>x/25=y/15
y/5=z/4
=>y/15=z/12
=>x/25=y/15=z/12
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{25}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{25-15+12}=1\)
=>x=25; y=15; z=12
Để giải hệ phương trình này, ta sẽ sử dụng phương pháp thay thế.
Trước hết, ta sẽ giải hai phương trình đầu tiên để tìm x, y, và z.
Từ \( \frac{x}{3} = \frac{y}{5} \), ta có thể suy ra:
\[ x = \frac{3y}{5} \]
Từ \( \frac{y}{2} = \frac{z}{4} \), ta có thể suy ra:
\[ y = \frac{2z}{4} = \frac{z}{2} \]
Bây giờ, ta có thể thay vào phương trình cuối cùng để tìm giá trị của x, y, và z.
Thay x và y vào phương trình:
\[ -2(\frac{3y}{5}) + y - z = -22 \]
\[ -\frac{6y}{5} + y - z = -22 \]
\[ y - \frac{6y}{5} - z = -22 \]
\[ \frac{5y - 6y}{5} - z = -22 \]
\[ -\frac{y}{5} - z = -22 \]
\[ -\frac{y}{5} = -22 + z \]
\[ y = 5(22 - z) \]
Thay y vào phương trình \( x = \frac{3y}{5} \), ta có:
\[ x = \frac{3(5(22 - z))}{5} \]
\[ x = 3(22 - z) \]
Thay y vào phương trình \( y = \frac{z}{2} \), ta có:
\[ z = 2y \]
Bây giờ, ta sẽ thay x, y, và z vào phương trình cuối cùng để tìm giá trị của z:
\[ -2x + y - z = -22 \]
\[ -2(3(22 - z)) + 5(22 - z) - z = -22 \]
\[ -2(66 - 2z) + 110 - 5z - z = -22 \]
\[ -132 + 4z + 110 - 6z = -22 \]
\[ -22 - 2z = -22 \]
\[ -2z = 0 \]
\[ z = 0 \]
Khi biết z = 0, ta có thể tìm giá trị của x và y:
\[ x = 3(22 - 0) = 66 \]
\[ y = 5(22 - 0) = 110 \]
Vậy, giải hệ phương trình ta được:
\[ x = 66, y = 110, z = 0 \]
tìm x,y thuộc Z sao cho x-4/y-3=4/3 với x-y=5