Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Uyên Phương
Xem chi tiết
Doremon
Xem chi tiết
Lê Thị Hiền Trang
Xem chi tiết
Nguyễn Thị Cát Tuyền
19 tháng 10 2016 lúc 20:57

Ta có :

Cho biểu thức tính trên là B

B= 10+ 72n - 1 = 10n-1+72n

10-1= 999....99 (có n-1 chữ số 9)= 9x 111...11+8n=111..1 -n + 9n

A=10n -1+72n = 9 (111...1) 72n=>B :9=111...11+ 8n= 11....1-n +9n

Ta thấy : 11...1 có n chữ số 1 tổng các chữ số là n 

11....1 -n chia hết cko 9 

=> B: 9 = 11.....1 -n + 9n chia hết cko 9

k mình nha :))

0o0 Lạnh_ Lùng_Là_Vậy 0o...
15 tháng 7 2017 lúc 21:50

Cho biểu thức chính trên là B :

B = 10n + 72n - 1 = 10n - 1 + 72n

10n - 1 = 999...99 ( có n - 1 chữ số 9 ) = 9x

111...11 + 8n = 111...11 - n + 9n

A= 10n - 1 + 72n = 9 ( 111...11 ) 72n => B : 9 = 111...11 + 8n = 111...11 - n chia hết cho 9

=> B : 9 = 111...11 - n + 9n chia hết cho 9

0o0 Phương _ Love _ Kha...
7 tháng 10 2017 lúc 19:21

ko pik

Ánh mặt trời
Xem chi tiết
J Cũng ĐC
28 tháng 11 2015 lúc 20:57

a) Ta có: 

\(10^n+72n-1=\left(10^n-1\right)+72n=999...9+72n=9.111...11+72\)

                                                                                                       -------------                                   ----------------

                                                                                                      n chữ số                                      n chữ số 

\(=9\left(111...11-n\right)+9n+72n=9\left(111...11-n\right)+81n\)

             ----------------                                                                 ----------------

              n chữ số                                                                      n chữ số

Vì n là tổng các chữ số của 111...11 nên 111...11-n chia hết cho 9 

                                                  -----------         -----------

                                                    n c/số             n c/số

=> 9(111...11-n) chia hết cho 9.9 hay 9(111...11-n) chia hết cho 81

          ----------                                                ----------

           n c/số                                                  n c/số

Mà 81n chia hết cho 81 nên 9(111...11-n)+81n chia hết cho 81 hay \(10^n+72n-1\) chia hết cho 81

\(\left(n\in N\right)\)

 Vậy \(10^n+72n-1\) chia hết cho 81 \(\left(n\in N\right)\)

J Cũng ĐC
28 tháng 11 2015 lúc 21:08

b)  Với \(x,y\in N\) ta có:

      3(2x+y)-(x+3y)=6x+3y-x-3y=(6x-x)+(3y-3y)=5x 

Vì 5 chia hết cho 5 nên 5x chia hết cho 5 hay 3(2x+y)+(x+3y) chia hết cho 5                                        \(\left(1\right)\)

Vì 2x+y chia hết cho 5 nên 3(2x+y) chia hết cho 5                                                                                       \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)=> x+3y chia hết cho 5

               Vậy x+3y chia hết cho 5

trần thị thu thủy
Xem chi tiết
Phạm Tuấn Kiệt
24 tháng 11 2015 lúc 15:10

10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
Ta có:

10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9

=>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81

=>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81

=>đpcm.

vietha2k9
Xem chi tiết
Hắc Hoàng Thiên Sữa
28 tháng 5 2021 lúc 16:48

Ta Có:

Cho biểu thức trên là B

\(b\)\(=\)\(10\)\(^n\)\(72n\)\(-1\)

 \(=10\)\(^n\)\(+72n\)\(-1\)

\(=10^{n^{ }}\)\(-1\)(có n\(-1chữ\) số 9)=9\(x\)(11....1)(có n chữ số 1)

B= 10n-1+72n=9x(11....1)+72n 

=>B:9=11....1+8n=11....1-n+9n

Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n

=>11....1-n chia hết cho 9

=>B:9=11....1-n+9n chia hết cho 9

Vậy B chia hết cho 81

Ta Có:

Cho biểu thức trên là B

bb==1010nn72n72n−1−1

 =10=10nn+72n+72n−1−1

=10n=10n−1−1(có n−1chữ−1chữ số 9)=9xx(11....1)(có n chữ số 1)

B= 10n-1+72n=9x(11....1)+72n 

=>B:9=11....1+8n=11....1-n+9n

Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n

=>11....1-n chia hết cho 9

=>B:9=11....1-n+9n chia hết cho 9

Vậy B chia hết cho 81

Huỳnh MinhKhang
Xem chi tiết
titanic
13 tháng 12 2016 lúc 12:03

A = 10ⁿ + 72n - 1 = 10ⁿ - 1 + 72n
10ⁿ - 1 = 99...9 (có n-1 chữ số 9) = 9x(11..1) (có n chữ số 1)

A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n => A : 9 = 11..1 + 8n = 11...1 -n + 9n
thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9
=> A chia hết cho 81

Sư tử đáng yêu
28 tháng 12 2018 lúc 9:00

A = 10ⁿ + 72n - 1 = 10ⁿ - 1 + 72n

10ⁿ - 1 = 99...9 (có n-1 chữ số 9) = 9x(11..1) (có n chữ số 1)

A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n => A : 9 = 11..1 + 8n = 11...1 -n + 9n

thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9

=> A : 9 = 11..1 - n + 9n chia hết cho 9

=> A chia hết cho 81

tth_new
28 tháng 12 2018 lúc 9:47

Hoặc dùng phương pháp quy nạp dạng cơ bản (dùng được cho toán 6 nâng cao) 

Với \(n=0\Rightarrow\).... (bạn làm chỗ này tiếp nhé)

Với n = 1 \(\Rightarrow10^n+72n-1=10^1+72.1-1=81⋮81\)

\(\Rightarrow\)mệnh đề đúng với n = 1     (1)

Giả sử mệnh đề đúng với n = k tức là \(10^k+72k-1⋮81\) (giả thiết qui nạp)   (2)

Ta sẽ chứng minh nó cũng đúng với n = k + 1.Thật vậy:            

\(10^{k+1}+72\left(k+1\right)-1\)

\(=10\left(10^k+72k-1\right)-\left(648k-81\right)\)

Mà \(10^k+72k-1⋮81\) nên \(10\left(10^k+72k-1\right)⋮81\)   (*)

Mặt khác: \(648k⋮81;81⋮81\Rightarrow648k-81⋮81\) (**)

Từ (*) và (**) suy ra \(10\left(10^k+72k-1\right)-\left(648k-81\right)⋮81\) 

\(\Rightarrow\)mệnh đề đúng với n = k + 1 (3)

Từ (1) và (2) và (3) suy ra mệnh đề đúng với mọi \(n\inℕ\) (đpcm)

Bùi Vĩnh Hà
Xem chi tiết
nguyen cong duy
Xem chi tiết

10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.