Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thom tran thi
Xem chi tiết
Thom tran thi
22 tháng 4 2016 lúc 17:43

ai làm có thưởng 2điem

Khánh Ko Ổn
Xem chi tiết
Minh Hồng
17 tháng 2 2021 lúc 18:17

1/ \(x^4+x^2-2=0\)

\(\Leftrightarrow\left(x^2\right)^2-x^2+2x^2-2=0\\ \Leftrightarrow x^2\left(x^2-1\right)+2\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+2=0\\x+1=0\\x-1-0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

2/ \(x^3+3x^2+6x+4=0\)

\(\Leftrightarrow\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(4x+4\right)=0\\ \Leftrightarrow x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+2x+4\right)=0\)

\(\Leftrightarrow x+1=0\) (do \(x^2+2x+4=\left(x+1\right)^2+3>0,\forall x\))

\(\Leftrightarrow x=-1\).

3/ \(x^3-6x^2+8x=0\)

\(\Leftrightarrow x\left(x^2-6x+8\right)=0\\ \Leftrightarrow x\left[\left(x^2-2x\right)-\left(4x-8\right)\right]=0\\ \Leftrightarrow x\left[x\left(x-2\right)-4\left(x-2\right)\right]=0\\ \Leftrightarrow x\left(x-2\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=4\end{matrix}\right.\)

4/ \(x^4-8x^3-9x^2=0\)

\(\Leftrightarrow x^2\left(x^2-8x-9\right)=0\\ \Leftrightarrow x^2\left(x^2-9x+x-9\right)=0\\ \Leftrightarrow x^2\left(x\left(x-9\right)+\left(x-9\right)\right)=0\\ \Leftrightarrow x^2\left(x+1\right)\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=9\end{matrix}\right.\)

Dương Thị Tâm Khanh
Xem chi tiết
ctk_new
30 tháng 10 2019 lúc 19:54

a) \(x^2-4x-7=0\)

Ta có: \(\Delta=4^2+4.28=128,\sqrt{\Delta}=\sqrt{128}\)

pt có 2 nghiệm:

\(x_1=\frac{4+\sqrt{128}}{2}\);\(x_2=\frac{4-\sqrt{128}}{2}\)

Khách vãng lai đã xóa
ctk_new
30 tháng 10 2019 lúc 19:56

b) \(x^2-x-11=0\)

Ta có: \(\Delta=1^2+4.11=45,\sqrt{\Delta}=\sqrt{45}\)

pt có 2 nghiệm:

\(x_1=\frac{1+\sqrt{45}}{2}\)\(x_2=\frac{1-\sqrt{45}}{2}\)

Khách vãng lai đã xóa
tong phuong linh
Xem chi tiết
Nguyễn Xạ Điêu
Xem chi tiết
Lightning Farron
28 tháng 11 2016 lúc 17:16

a)\(2x^4-6x^3+x^2+6x-3=0\)

\(\Leftrightarrow2x^4-6x^3+3x^2-2x^2+6x-3=0\)

\(\Leftrightarrow x^2\left(2x^2-6x+3\right)-\left(2x^2-6x+3\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(2x^2-6x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(2x^2-6x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+1=0\\2x^2-6x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\\\Delta_{2x^2-6x+3}=\left(-6\right)^2-4\left(2.3\right)=12\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\\x_{1,2}=\frac{6\pm\sqrt{12}}{4}\end{array}\right.\)

b)\(x^3+9x^2+26x+24=0\)

\(\Leftrightarrow x^3+5x^2+6x+4x^2+20x+24=0\)

\(\Leftrightarrow x\left(x^2+5x+6\right)+4\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow\left(x^2+5x+6\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x+3=0\\x+4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=-3\\x=-4\end{array}\right.\)

 

 

 

Hà Thị Phương Linh
Xem chi tiết
Lyzimi
8 tháng 8 2016 lúc 8:41

d) <=>x2-5x-x+5=0

<=>x(x-5)-(x-5)=0

<=>(x-5)(x-1)=0

<=>x=5 hoặc x=1

Hà Thị Phương Linh
9 tháng 8 2016 lúc 7:18

thank nha

Hoàng Đắc Dũng
Xem chi tiết
lun Lan
Xem chi tiết
Nguyễn Thành Trương
26 tháng 7 2019 lúc 10:03

\( a)6{x^2} + 7x - 3 < 0\\ \Leftrightarrow 6{x^2} + 9x - 2x - 3 < 0\\ \Leftrightarrow 3x\left( {2x + 3} \right) - \left( {2x + 3} \right) < 0\\ \Leftrightarrow \left( {2x + 3} \right)\left( {3x - 1} \right) < 0\\ \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} 2x + 3 < 0\\ 3x - 1 > 0 \end{array} \right.\\ \left\{ \begin{array}{l} 2x + 3 > 0\\ 3x - 1 < 0 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} x < - \dfrac{3}{2}\\ x > \dfrac{1}{3} \end{array} \right.\\ \left\{ \begin{array}{l} x < - \dfrac{3}{2}\\ x < \dfrac{1}{3} \end{array} \right. \end{array} \right. \Leftrightarrow x \in \left( { - \dfrac{3}{2};\dfrac{1}{3}} \right) \)

Nguyễn Thành Trương
26 tháng 7 2019 lúc 21:25

Bất phương trình bậc nhất một ẩn

Nguyễn Thành Trương
26 tháng 7 2019 lúc 21:29

Bất phương trình bậc nhất một ẩn

(Câu trả lời bằng hình ảnh)

vu dieu linh
Xem chi tiết
Minh Nguyen
7 tháng 2 2020 lúc 18:16

1/ \(x^3-7x+6=0\)

\(\Leftrightarrow x^3+3x^2-3x^2-9x+2x+6=0\)

\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-x-2x+2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)

hoặc   \(x-1=0\)

hoặc   \(x+2=0\)

\(\Leftrightarrow\)\(x=-3\)

hoặc   \(x=1\)

hoặc   \(x=-2\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-3;1;-2\right\}\)

2/ \(x^3-6x^2-x+30\)

\(\Leftrightarrow x^3+2x^2-8x^2-16x+15x+30=0\)

\(\Leftrightarrow x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-8x+15\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-3x-5x+15\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x-3\right)-5\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\)\(x+2=0\)

hoặc   \(x-3=0\)

hoặc   \(x-5=0\)

\(\Leftrightarrow\)\(x=-2\)

hoặc   \(x=3\)

hoặc   \(x=5\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-2;3;5\right\}\)

3/ \(x^3-9x^2+6x+16=0\)

\(\Leftrightarrow x^3+x^2-10x^2-10x+16x+16=0\)

\(\Leftrightarrow x^2\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-10x+16\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-8x-2x+16\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x\left(x-8\right)-2\left(x-8\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-8\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc  \(x-8=0\)

hoặc  \(x-2=0\)

\(\Leftrightarrow\)\(x=-1\)

hoặc   \(x=8\)

hoặc   \(x=2\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-1;8;2\right\}\)

Khách vãng lai đã xóa
Minh Nguyen
7 tháng 2 2020 lúc 18:25

4/ Đề bài sai ! Sửa lại nhé :

 \(2x^3-x^2+5x+3=0\)

\(\Leftrightarrow2x^3+x^2-2x^2-x+6x+3=0\)

\(\Leftrightarrow x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x^2-x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x^2-x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(tm\right)\\\left(x-\frac{1}{2}\right)^2+\frac{11}{4}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-\frac{1}{2}\right\}\)

Khách vãng lai đã xóa
Sakura Kinomoto
Xem chi tiết
Nguyễn Châm Anh
15 tháng 8 2017 lúc 13:02

\(2x^4-6x^3+x^2+6x-3=0\)

\(\Leftrightarrow2x^4-2x^3-4x^3+4x^2-3x^2+3x+3x-3=0\)

\(\Leftrightarrow2x^3\left(x-1\right)-4x^2\left(x-1\right)-3x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^3-4x^2-3x+3\right)=0\)

Sakura Kinomoto
20 tháng 8 2017 lúc 9:14

Đã có đáp án:

2x^4-6x^3+x^2+6x-3=0

2x^4-6x^3-3x^2-2x^2-6x-3=0

2x^2(x^2-1)-6x(x^2-1)+3(x^2-1)=0

(x^2-1)(2x^2-6x+3)=0

=> {  x^2-1=0 =>x=-1;1

 Giả phương trình :(*) 2x^2-6x+3=0

                              4x^2-12x-6=0

                               (2x)^2-2.2x.3-3=0

                               (2x-3)^2- (√3)^2=0

                              ( 2x-3)^2=(√3)^2

                              => 2x-3=-√3 => 2x= 3-√3 => x=(3-√3)/2

                                   2x-3=√3  => 2x=√3+3 => x=(√3+3)/2

                    Vậy x....