X^2 + 6x+ 10
Cho biết : \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\)=1
Tính : \(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)=?
cho \(\sqrt{x^2-6x+19}\)-\(\sqrt{x^2-6x+10}\)=3 . tính giá trị của T=\(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\)
\(3T=\left(\sqrt{x^2-6x+19}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\right)\)
\(=x^2-6x+19-\left(x^2-6x+10\right)=9\)
\(\Rightarrow T=3\)
Cho căn x^2-6x+13 - căn x^2-6x+10 = 1
Tính căn x^2-6x+13 + căn x^2-6x+10
Làm ơn giúp mình
Ta có:
\(\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)\)
\(=x^2-6x+13-\left(x^2-6x+10\right)\)
\(=3\)
mà \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}=1\)
=> \(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}=3\)
Em chưa hiểu ở dòng thứ 3,chị có thể giải thích cho em với được ko ạ
À à em hiểu rồi,nhân 2 cái đó lại,cảm ơn chị rất nhiều ạ
`x^13 -6x^2 +6x^11 -6x^10 + ... - 6x^2 +6x-5` với x=5
Sửa đề: \(x^{13}-6x^{12}+6x^{11}-6x^{10}+...-6x^2+6x-5\)
x=5 nên x+1=6
\(x^{13}-6x^{12}+6x^{11}-6x^{10}+...-6x^2+6x-5\)
\(=x^{13}-x^{12}\left(x+1\right)+x^{11}\left(x+1\right)-x^{10}\left(x+1\right)+...-x^2\left(x+1\right)+x\left(x+1\right)-x\)
\(=x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-x\)
=0
Cho \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}=1\) Tính: \(A=\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)
Ta có: \(A\cdot1=\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)
=> A = 3
\(Cho\sqrt{x^{ }2-6x+13}-\sqrt{x^{ }2-6x+10}=0\)
Tính \(\sqrt{x^{ }2-6x+13}+\sqrt{x^{ }2-6x+10}\)
cho \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}=1\)
hãy tính \(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)
(\(\sqrt{x^2-6x+13}\) - \(\sqrt{x^2-6x+10}\))(\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\)) = x2 - 6x + 13 - x2 + 6x - 10 = 3
=>
\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\) = 3
Cho \(\sqrt{x^2-6x+19}-\sqrt{x^2-6x+10}=3\)
Tính M = \(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\)
Tìm x
\(\sqrt{x^2-6x+10}+\sqrt{x^2-6x+8}+\sqrt{x^2-6x+12}=4+\sqrt{3}\)
Tìm x:
\(\sqrt{x^2-6x+10}+\sqrt{x^2-6x+18}+\sqrt{x^2-6x+12}=4+\sqrt{3}\)